The fascinating dielectric property of relaxor ferroelectrics is investigated on the basis of phase-transition dynamics within the mean-field theory. With a power-law distribution of the Curie temperature for the second order phase transition ferroelectrics, the complex dielectric permittivity is derived. The result shows that the modified Curie–Weiss relation in the paraelectric phase follows the power-law distribution directly. The significant conclusion is that the “rediscovered” distributed Curie temperature can describe the universal dielectric dispersion for both real part and imaginary part of dielectric permittivity with temperature and frequency in relaxor ferroelectrics, and it conforms well to experimental results.
References
1.
G.
Smolenski
and A.
Agranovskaya
, Fiz. Tverd. Tela
1
, 1562
(1960
) [Sov. Phys. Solid State 1, 1429 (1960) (in Russian)].2.
R.
Rolov
, Fiz. Tverd. Tela
6
, 2128
(1965
) [Sov. Phys. Solid State 6, 1676 (1965) (in Russian)].3.
B.
Kirsh
, H.
Schmitt
, and H.
Muser
, Ferroelectrics
68
, 275
(1986
). 4.
L. E.
Cross
, Ferroelectrics
76
, 241
(1987
). 5.
J.
Chen
, H.
Chan
, and M.
Harmer
, J. Am. Ceram. Soc.
72
, 593
(1989
). 6.
C. A.
Randall
, A. D.
Hilton
, D. J.
Barber
, and T. R.
Shrout
, J. Mater. Res.
8
, 880
(1993
). 7.
D.
Viehland
, S. J.
Jang
, L. E.
Cross
, and M.
Wuttig
, Phys. Rev. B
46
, 8003
(1992
). 8.
H.
Qian
and L. A.
Bursill
, Int. J. Mod. Phys. B
10
, 2007
(1996
). 9.
R. A.
Cowley
, S. N.
Gvasaliya
, S. G.
Lushnikov
, B.
Roessli
, and G. M.
Rotaru
, Adv. Phys.
60
, 229
(2011
). 10.
C.
Laulhe
, F.
Hippert
, R.
Bellissent
, A.
Simon
, and G. J.
Cuello
, Phys. Rev. B
79
, 064104
(2009
). 11.
H.
Thomas
, IEEE Trans. Magn.
5
, 874
(1969
). 12.
M. E.
Lines
, Phys. Rev.
177
, 797
(1989
). 13.
M. E.
Lines
and A. M.
Glass
, Principles and Applications of Ferroelectrics and Related Materials
(Clarendon Press Oxford
, 1997
), Vol. 31.14.
G. G.
Guzman-Verri
and C. M.
Varma
, Phys. Rev. B
91
, 144105
(2015
). 15.
W. Q.
Cao
and X. Z.
Shang
, Ferroelectr. Lett.
42
, 132
(2015
). 16.
G.
Zerihun
, G. S.
Gong
, S. A.
Huang
, and S. L.
Yuan
, Ceram. Int.
41
, 12426
(2015
). 17.
G.
Xu
, Z.
Zhong
, Y.
Bing
, Z. G.
Ye
, and G.
Shirane
, Nat. Mater.
5
, 134
(2006
). 18.
Z.
Wang
, X.
Li
, X.
Long
, and Z. G.
Ye
, Scr. Mater.
60
, 830
(2009
). 19.
G.
Burns
and F.
Dacol
, Phys. Rev. B
28
, 2527
(1983
). 20.
W.
Kleemann
and R.
Lindner
, Ferroelectrics
199
, 1
(1997
). 21.
D.
Viehland
, S. J.
Jang
, L. E.
Cross
, and M.
Wuttig
, J. Appl. Phys.
68
, 2916
(1990
). 22.
V. V.
Shvartsman
and D. C.
Lupascu
, J. Am. Ceram. Soc.
95
, 1
(2012
). 23.
M. R.
Panigrahi
and S.
Panigrahi
, Physica B
405
, 2556
(2010
). 24.
R.
Farhi
, M.
El Marssi
, A.
Simon
, and J.
Ravez
, Eur. Phys. J. B
9
, 599
(1999
). 25.
R.
Farhi
, M.
El Marssi
, A.
Simon
, and J.
Ravez
, Eur. Phys. J. B
18
, 605
(2000
). 26.
T.
Maiti
, R.
Guo
, and A. S.
Bhalla
, J. Am. Ceram. Soc.
91
, 1769
(2008
). © 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.