Fluffy spherical structure NiCo2S4 decorated with cubic phase hexagonal nanosheets was successfully synthesized through a two-step solvothermal method for energy storage. The electrochemical measurements reveal its good reversibility together with its high rate ability (1354 F g−1 at 0.5 A g−1 and 1128 F g−1 at 10 A g−1). Positron annihilation techniques (positron annihilation lifetime spectra and Doppler broadening spectra) were conducted to investigate the defects and the electronic structure of the two-step synthesized NiCo2S4. The results showed high S/W ratio, which is consistent with the electrochemical results. An asymmetric supercapacitor (ASC) was assembled in a button cell using the two-step synthesized NiCo2S4 as the positive electrode material and commercially activated carbon as the negative electrode material. The ASC presents a high energy density of 30.8 W kg−1 at a power density of 352.2 W kg−1 and 15.5 W kg−1 at a power density of 6860 W kg−1, with excellent cycling stability (89.3% capacitance retention after 3000 cycles) and nearly 100% Coulombic efficiency.

1.
G.
Wang
,
L.
Zhang
, and
J.
Zhang
,
Chem. Soc. Rev.
41
(
2
),
797
828
(
2012
).
2.
J.
Miller
and
P.
Simon
,
Science
321
(
5889
),
651
652
(
2008
).
3.
T.
Brousse
,
D.
Bélanger
,
K.
Chiba
,
M.
Egashira
,
F.
Favier
,
J.
Long
,
J.
Miller
,
M.
Morita
,
K.
Naoi
,
P.
Simon
, and
W.
Sugimoto
,
Springer Handbook of Electrochemical Energy
(Springer, Berlin, Heidelberg,
2017
).
4.
M.
Hannan
,
M.
Lipu
,
A.
Hussain
, and
A.
Mohamed
,
Renew. Sustain. Energy Rev.
78
,
834
854
(
2017
).
5.
Y.
Wang
and
Y.
Xia
,
Adv. Mater.
25
(
37
),
5336
42
(
2013
).
6.
P.
Simon
and
Y.
Gogotsi
,
Nat. Mater.
7
(
11
),
845
854
(
2008
).
7.
E.
Frackowiak
,
Phys. Chem. Chem. Phys.
9
(
15
),
1774
1785
(
2007
).
8.
A.
Pendashteh
,
E.
Senokos
,
J.
Palma
,
M.
Andersona
,
J.
Vilatelac
, and
R.
Marcilla
,
J. Power Sources
372
,
64
73
(
2017
).
9.
H.
Pan
,
J.
Li
, and
Y.
Feng
,
Nanoscale Res. Lett.
5
(
3
),
654
668
(
2010
).
10.
J.
Huang
,
J.
Wang
,
C.
Wang
,
H.
Zhang
,
C.
Lu
, and
J.
Wang
,
Chem. Mater.
27
(
6
),
2107
2113
(
2015
).
11.
Y.
Wang
,
Z.
Shi
,
Y.
Huang
,
Y.
Ma
,
C.
Wang
,
M.
Chen
, and
Y.
Chen
,
J. Phys. Chem. C
113
(
30
),
13103
13107
(
2009
).
12.
X.
Liu
,
G.
Du
,
J.
Zhu
,
Z.
Zeng
, and
X.
Zhu
,
Appl. Surf. Sci.
384
,
92
98
(
2016
).
13.
G.
Du
,
Z.
Zeng
,
B.
Xiao
,
D.
Wang
,
Y.
Yuan
,
X.
Zhu
, and
J.
Zhu
,
Dalton Trans.
46
(
47
),
16532
(
2017
).
14.
G.
Lee
,
C. V.
Varanasi
, and
J.
Liu
,
Nanoscale
7
(
7
),
3181
3188
(
2015
).
15.
D.
Wang
,
W.
Zhu
,
Y.
Yuan
,
G.
Du
,
X.
Zhu
, and
G.
Pezzotti
,
J. Alloys Compd.
735
,
1505
1513
(
2018
).
16.
C.
Hu
,
J.
Chen
, and
K.
Chang
,
J. Power Sources
221
(
1
),
128
133
(
2013
).
17.
M.
Li
,
J.
Cheng
,
J.
Fang
,
Y.
Yang
,
F.
Liu
, and
X.
Zhang
,
Electrochim. Acta
134
(
21
),
309
318
(
2014
).
18.
Z.
Yang
,
X.
Zhu
,
K.
Wang
,
G.
Ma
,
H.
Cheng
, and
F.
Xu
,
Appl. Surf. Sci.
347
,
690
695
(
2015
).
19.
D.
Cai
,
D.
Wang
,
C.
Wang
,
B.
Liu
,
L.
Wang
,
Y.
Liu
,
Q.
Li
, and
T.
Wang
,
Electrochim. Acta
151
,
35
41
(
2015
).
20.
J.
Xiao
,
L.
Wan
,
S.
Yang
,
F.
Xiao
, and
S.
Wang
,
Nano Lett.
14
(
2
),
831
(
2014
).
21.
H.
Wang
,
C.
Wang
,
C.
Qing
,
D.
Sun
,
B.
Wang
,
G.
Qu
,
M.
Sun
, and
Y.
Tang
,
Electrochim. Acta
174
,
1104
1112
(
2015
).
22.
Y.
Gao
,
L.
Mi
,
W.
Wei
,
S.
Cui
,
Z.
Zheng
,
H.
Hou
, and
W.
Chen
,
ACS Appl. Mater. Interfaces
7
(
7
),
4311
4319
(
2015
).
23.
W.
Chen
,
C.
Xia
, and
H.
Alshareef
,
ACS Nano
8
(
9
),
9531
(
2014
).
24.
W.
Hu
,
R.
Chen
,
W.
Xie
,
L.
Zou
,
N.
Qin
, and
D.
Bao
,
ACS Appl. Mater. Interfaces
6
,
19318
19326
(
2014
).
25.
L.
Beka
,
X.
Li
, and
W.
Liu
,
Sci. Rep.
7
(
1
),
2105
(
2017
).
26.
Y.
Liu
,
J.
Zhang
,
S.
Wang
,
K.
Wang
,
Z.
Chen
, and
Q.
Xu
,
New J. Chem.
38
(
9
),
4045
4048
(
2014
).
27.
Y.
Zhu
,
Z.
Wu
,
M.
Jing
,
X.
Yang
,
W.
Song
, and
X.
Ji
,
J. Power Sources
273
,
584
590
(
2015
).
28.
L.
Shen
,
L.
Yu
,
H.
Wu
,
X.
Yu
,
X.
Zhang
, and
X.
Lou
,
Nat. Commun.
6
,
6694
(
2015
).
29.
Z.
Lv
,
Q.
Zhong
,
Z.
Zhao
, and
Y.
Bu
,
J. Mater. Sci. Mater. Electron.
28
(
23
),
18064
18074
(
2017
).
30.
Y.
Liu
,
Z.
Wang
,
Y.
Zhong
,
M.
Tade
,
W.
Zhou
, and
Z.
Shao
,
Adv. Funct. Mater.
27
(
28
),
1701229
(
2017
).
31.
H.
He
,
B.
Zhao
,
N.
Qi
,
B.
Wang
,
Z.
Chen
,
X.
Su
, and
X.
Tang
,
J. Mater. Sci.
53
(
18
),
12961
12973
(
2018
).
32.
B.
Zhou
,
C.
Li
,
N.
Qi
,
M.
Jiang
,
B.
Wang
, and
Z.
Chen
,
Appl. Surf. Sci.
450
,
31
37
(
2018
).
33.
A.
Druzhkov
and
A.
Nikolaev
,
J. Nucl. Mater.
508
,
100
106
(
2018
).
34.
V.
Viterbo
,
J.
Braga
,
A.
Braga
, and
M.
Almeida
,
J. Chem. Inf. Comput. Sci.
41
(
2
),
309
313
(
2001
).
35.
J.
Qi
,
G.
Mu
,
X.
Tang
,
H.
Tong
,
W.
Zheng
,
L.
Chen
,
J.
Liao
,
B.
Shen
,
X.
Qu
,
D.
Shen
,
P.
Li
, and
Z.
Yin
,
Nucl. Technol.
23
(7), 433–436 (
2000
).
36.
T.
Siegert
,
R.
Diehl
,
J.
Greiner
,
M.
Krause
,
A.
Beloborodov
,
M.
CadolleBel
,
F.
Guglielmetti
,
J.
Rodriguez
,
A.
Strong
, and
X.
Zhang
,
Nature
531
, 341–343 (
2016
).
37.
V.
Ghosh
,
M.
Alatalo
,
P.
Asoka-Kumar
,
B.
Nielsen
,
K.
Lynn
,
A.
Kruseman
, and
P.
Mijnarends
,
Phys. Rev. B
61
(
15
),
133
(
2000
).
38.
E.
Nascimento
,
O.
Helene
,
C.
Takiya
, and
V.
Vanin
,
Nucl. Instrum. Methods Phys. Res.
538
(
1
),
723
730
(
2005
).
39.
C.
Xia
,
P.
Li
,
A.
Gandi
,
U.
Schwingenschlogl
, and
H.
Alshareef
,
Chem. Mater.
27
(
19
),
6482
6485
(
2015
).
40.
Z.
Zeng
,
D.
Wang
,
J.
Zhu
,
F.
Xiao
,
Y.
Li
, and
X.
Zhu
,
Cryst. Eng. Comm.
18
,
2363
2374
(
2016
).
41.
L.
Mei
,
T.
Yang
,
C.
Xu
,
M.
Zhang
,
L.
Chen
,
Q.
Li
, and
T.
Wang
,
Nano Energy
3
,
36
45
(
2014
).
42.
J.
Yang
,
M.
Ma
,
C.
Sun
,
Y.
Zhang
,
W.
Huang
, and
X.
Dong
,
J. Mater. Chem. A
3
,
1258
1264
(
2015
).
43.
H.
Li
,
M.
Yu
,
F.
Wang
,
P.
Liu
,
Y.
Liang
,
J.
Xiao
,
C.
Wang
,
Y.
Tong
, and
G.
Yang
,
Nat. Commun.
4
,
1894
(
2013
).
44.
H.
Saito
and
T.
Hyodo
,
Phys. Rev. Lett.
90
(
19
),
193401
(
2003
).
45.
D.
Wang
,
Z.
Chen
,
D.
Wang
,
N.
Qi
,
J.
Gong
,
C.
Cao
, and
Z.
Tang
,
J. Appl. Phys.
107
(
2
),
023524
(
2010
).
You do not currently have access to this content.