Using the maximum entropy principle, we present a general theory to describe ac and dc high-field transport in monolayer graphene within a dynamical context. Accordingly, we construct a closed set of hydrodynamic (HD) equations containing the same scattering mechanisms used in standard Monte Carlo (MC) approaches. The effects imputable to a linear band structure, the role of conductivity effective mass of carriers, and their connection with the coupling between the driving field and the dissipation phenomena are analyzed both qualitatively and quantitatively for different electron densities. The theoretical approach is validated by comparing HD results with existing MC simulations.
REFERENCES
1.
E. T.
Jaynes
, Phys. Rev.
106
, 620
(1957
); E. T.
Jaynes
, Phys. Rev.
108
, 171
(1957
). 2.
Maximum Entropy and Bayesian Methods, edited by J. Skilling (Kluwer Academic Publishers, 2004).
3.
M.
Trovato
and L.
Reggiani
, Riv. Nuovo Cimento
35
, 99
–266
(2012
). 4.
I.
Müller
and T.
Ruggeri
, Rational Extended Thermodynamics
(Springer-Verlag
, New York
, 1998
), Vol. 37.5.
T.
Ruggeri
and M.
Sugiyama
, Rational Extended Thermodynamics Beyond the Monatomic Gas
(Springer
, 2015
).6.
D.
Jou
, G.
Lebon
, and J.
Casas-Vazquez
, Extended Irreversible Thermodynamics
(Springer
, 2010
).7.
M.
Trovato
and L.
Reggiani
, Phys. Rev. E
81
, 021119
(2010
). 8.
M.
Trovato
and L.
Reggiani
, Phys. Rev. E
84
, 061147
(2011
). 9.
M.
Trovato
and L.
Reggiani
, Phys. Rev. Lett.
110
, 020404
(2013
). 10.
M.
Trovato
and P.
Falsaperla
, Phys. Rev. B
57
, 4456
(1998
). 11.
M.
Trovato
and L.
Reggiani
, J. Appl. Phys.
85
, 4050
(1999
). 12.
M.
Trovato
, P.
Falsaperla
, and L.
Reggiani
, J. Appl. Phys.
86
, 5906
(1999
). 13.
M.
Trovato
and L.
Reggiani
, Phys. Rev. B
61
, 16667
(2000
). 14.
M.
Trovato
and L.
Reggiani
, Phys. Rev. B
73
, 245209
(2006
). 15.
R.
Rengel
, J.
Iglesias
, E.
Pascual
, and M.
Martin
, J. Appl. Phys.
121
, 185705
(2017
). 16.
L.
Reggiani
, E.
Starikov
, P.
Shiktorov
, V.
Gruzinskis
, and L.
Varani
, Semicond. Sci. Technol.
12
, 141
(1997
). 17.
M.
Fischetti
, J.
Kim
, S.
Narayanan
, Z.
Ong
, C.
Sachs
, D.
Ferry
, and S.
Aboud
, J. Phys. Condens. Matter
25
, 473202
(2013
). 18.
S.
Piscanec
, M.
Lazzeri
, F.
Mauri
, A. C.
Ferrari
, and J.
Robertson
, Phys. Rev. Lett.
93
, 185503
(2004
);
[PubMed]
S.
Piscanec
, M.
Lazzeri
, F.
Mauri
, A. C.
Ferrari
, and J.
Robertson
, Phys. Rev. Lett.
95
, 236802
(2005
).
[PubMed]
19.
K. M.
Borysenko
, J. T.
Mullen
, E. A.
Barry
, S.
Paul
, Y. G.
Semenov
, J. M.
Zavada
, M. B.
Nardelli
, and K. W.
Kim
, Phys. Rev. B
81
, 121412(R)
(2010
). 20.
R.
Rengel
, C.
Couso
, and M.
Martin
, in Spanish Conference on Electron Devices (CDE) (IEEE, 2013), Vol. 175; R. Rengel, E. Pascual, and M. Martin, Appl. Phys. Lett.
104, 233107 (2014). 21.
E. H.
Hwang
and S. D.
Sarma
, Phys. Rev. B
77
, 115449
(2008
). 22.
M.
Lazzeri
, C.
Attaccalite
, L.
Wirtz
, and F.
Mauri
, Phys. Rev. B
78
, 081406
(2008
). 23.
24.
By introducing the same scattering parameters for both and transitions, the angular dependence disappears in the sum . This sum can be described with a single optical mode using the simplified term (8).
25.
For example, Piscanec and co-workers (see Refs. 18 and 22) assume that the inelastic intervalley processes are assisted, near the K-line, only by means of optical phonons. In this case, the GW-corrected DFT22 was used to extract different scattering parameters. However, these values have been determined, in the context of Kohn anomalies, only for transitions between symmetry points and they cannot be easily compared with the scattering parameters that appear be averaged over entire BZ,17,19 when the interactions with the entire phonon system is taken into account.
26.
In Refs. 19 and 20, the authors, to fit their DFT calculations, appear to consider the expression employed in Ref. 21, multiplying Eq. (11) for another angular factor . In this way, an additional factor in their final calculations is introduced. Consequently, to compare the HD simulations in the same conditions of MC calculations, by using the scattering rate (12), we must assume that .
27.
X.
Li
, E. A.
Barry
, J. M.
Zavada
, M.
Buongiorno Nardelli
, and K. W.
Kim
, Appl. Phys. Lett.
97
, 232105
(2010
). 28.
X.
Li
, K. M.
Borysenko
, M.
Buongiorno Nardelli
, and K. W.
Kim
, Phys. Rev. B
84
, 195453
(2011
). 29.
The more general choice of kinetic fields is given by and by the corresponding macroscopic variables , with and . Indeed, with this choice we can include, as particular case, the set of kinetic fields used in this paper and any other set of kinetic field, built by using, for example, polynomial expressions in the microscopic momentum . Indeed, due to the linear band structure, the macroscopic variable is proportional to the energy flux, while for more general moments, , we obtain . However, it is possible to show that by using the set (14), we obtain the faster convergent HD system, in the framework of moments method.
30.
C.
Jacoboni
and P.
Lugli
, The Monte Carlo Method for Semiconductor Device Simulation
(Springer-Verlag
, 1989
).31.
V.
Ariel
, e-print arXiv:1205.3995v1 (2012); V. Ariel and A. Natan, e-print arXiv:1206.6100v1 (2012).32.
In correspondence with the densities ; ; and , the collision frequencies are strongly increasing, respectively, in the energy ranges (eV); (eV); (eV) (or, equivalently, in the ranges of electric field (kV/cm); (kV/cm); and (kV/cm)).
34.
Also the remaining deviatoric moments converge toward the same final value only for large values of .
35.
M.
Nedjalkov
, H.
Kosina
, and S.
Selberherr
, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD’99, edited by K. Taniguchi and N. Nakayama (Business Center for Academy Society Japan, Kyoto, 1999), p. 155.36.
If is strictly negative and , then from Eq. (C13) also should increase to compensate and pass, through a zero value, from negative to positive values.
37.
If is expressed by means of a nonlinear function of , then (A4) can be considered only as a its first linear approximation . Therefore, using Eq. (A1), we will determine a more complicated expression for the energy with respect to a nonparabolic band structure (A3). However, by assuming that is an increasing function of the energy with , we obtain still a saturation velocity for the system, where .
38.
We remark that is introduced only for dimensional reasons. Indeed, in Eq. (A2), can be redefined only in terms of the new quantities and that are the only two experimental parameters that allow us to determine explicitly the conductivity effective mass.
39.
If , then and , but the quantity tends always to finite value.
40.
E.
McCann
and V. I.
Falko
, Phy. Rev. Lett.
96
, 086805
(2006
); E.
McCann
, D. S. L.
Abergel
, and V. I.
Falko
, Eur. Phys. J. Special Top.
148
, 91
(2007
); M.
Koshino
, New J. Phys.
11
, 095010
(2009
). 41.
T.
Ohta
, A.
Bostwick
, J. L.
McChesney
, T.
Seyller
, K.
Horn
, E.
Rotenberg
, Phys. Rev. Lett.
98
, 206802
(2007
). 42.
In a first approximation, we can neglect all interactions except those between the nearest-neighbor atoms in the same layer and between A-type atoms adjacent layer which are on the top of each other.
43.
F.
Guinea
, A. H.
Castro Neto
, and N. M. R.
Peres
, Phys. Rev. B
73
, 245426
(2006
); M.
Koshino
and E.
McCann
, Phy. Rev. B
79
, 125443
(2009
). 44.
R. S.
Thompson
, Y. C.
Chang
, and J. G.
Lu
, Eur. Phys. J. B
85
, 13
(2012
). 45.
A.
Gruneis
, C.
Attaccalite
, L.
Wirtz
, H.
Shiozawa
, R.
Saito
, T.
Pichler
, and A.
Rubio
, Phys. Rev. B
78
, 205425
(2008
). 46.
Shishir and co-workers23,46 have employed an expression similar to Eq. (22) but with a factor of eight in the numerator and with an acoustic deformation potential . Therefore, in order to consider the same expression in the present HD model, we must assume in Eq. (22) . Besides, they seem to ignore the inelastic intervalley (iv) transitions, by using the coupling constant (as in the present paper) but with a smaller optical phonon energy of .
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.