We fabricated and experimentally studied a wideband metamaterial comprising a 2D array of annular antennas with Superconductor-Insulator-Normal metal-Insulator-Superconductor (SINIS) bolometers. The annular antenna array metamaterial was designed for a frequency range of 300–450 GHz and consists of periodically arranged electrically small rings, each containing two or four SINIS bolometers connected in series or parallel. These periodic structures with a unit cell size of about one-tenth of a wavelength act as a distributed absorber and receive two orthogonal polarizations. The unit’s small cell size provides a higher density of bolometers and therefore increases the bandwidth and the dynamic range of a single pixel. Theoretical estimates at a central frequency of 345 GHz yield absorption efficiencies of over 80% of the incident RF power within the 300–450 GHz frequency range. The average absorption by the metamaterial matrix in the given frequency band is at least twice as high in comparison to the half-wave circle matrix. We measured the optical response at sample temperatures as low as 100 mK using a quasi-optical setup that consisted of an immersion sapphire lens, bandpass mesh filters, and a variable temperature cryogenic blackbody radiation source. The measured series array voltage responsivity was 1.3 × 109 V/W for radiation temperatures ranging from 2 K to 7.5 K. The current responsivity for the parallel array was 2.4 × 104 A/W at a bath temperature of 100 mK. The spectral response was measured in a 240–370 GHz range with a Backward Wave Oscillator radiation source. The measured equivalent temperature sensitivity could be reduced to 100 μK/Hz1/2 at a 2.7 K radiation temperature level, a value that is suitable for anisotropy measurements in cosmic microwave background radiation.
Skip Nav Destination
Article navigation
7 May 2019
Research Article|
May 03 2019
Annular antenna array metamaterial with SINIS bolometers
Special Collection:
Advances in Terahertz Solid-State Physics and Devices
M. Tarasov
;
M. Tarasov
a)
1
V. Kotelnikov Institute of Radio Engineering and Electronics RAS
, 125009 Moscow, Russia
Search for other works by this author on:
A. Sobolev;
A. Sobolev
1
V. Kotelnikov Institute of Radio Engineering and Electronics RAS
, 125009 Moscow, Russia
Search for other works by this author on:
A. Gunbina
;
A. Gunbina
2
Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)
, 603950 Nizhny Novgorod, Russia
Search for other works by this author on:
G. Yakopov;
G. Yakopov
3
Special Astrophysical Observatory, Big Altazimuth Telescope
, 369167 Nizhny Arhyz, Russia
Search for other works by this author on:
A. Chekushkin;
A. Chekushkin
1
V. Kotelnikov Institute of Radio Engineering and Electronics RAS
, 125009 Moscow, Russia
Search for other works by this author on:
R. Yusupov
;
R. Yusupov
1
V. Kotelnikov Institute of Radio Engineering and Electronics RAS
, 125009 Moscow, Russia
Search for other works by this author on:
S. Lemzyakov
;
S. Lemzyakov
4
P. Kapitza Institute for Physical Problems RAS
, 117334 Moscow, Russia
Search for other works by this author on:
V. Vdovin;
V. Vdovin
2
Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)
, 603950 Nizhny Novgorod, Russia
Search for other works by this author on:
V. Edelman
V. Edelman
4
P. Kapitza Institute for Physical Problems RAS
, 117334 Moscow, Russia
Search for other works by this author on:
Note: This paper is part of the Special Topic section “Advances in Terahertz Solid-State Physics and Devices” published in J. Appl. Phys. 125(15) (2019).
J. Appl. Phys. 125, 174501 (2019)
Article history
Received:
August 30 2018
Accepted:
April 16 2019
Citation
M. Tarasov, A. Sobolev, A. Gunbina, G. Yakopov, A. Chekushkin, R. Yusupov, S. Lemzyakov, V. Vdovin, V. Edelman; Annular antenna array metamaterial with SINIS bolometers. J. Appl. Phys. 7 May 2019; 125 (17): 174501. https://doi.org/10.1063/1.5054160
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00