For a long time, light manipulation at the nanoscale has been provided primarily with plasmonic materials. However, recent works show that the light can be controlled with dielectric particles. Here, we exploit the asymmetric shape of silicon nanopyramids to control the far-field scattering pattern and the electric field concentration inside the particles by simply changing the incident light polarization. This effect is considered both in air and lossless optical medium. For an explanation of the demonstrated features, we apply the multipole analysis of the scattering cross sections. We show that the electric and magnetic quadrupole resonances can be switched between them by changing the incident wave polarization providing changes of the scattering diagrams. We also show that the polarization control of the scattering properties of pyramidal nanoparticles strongly depends on the refractive index of the surrounding medium. The obtained results can be used for the development of optical antennas, switchers, and polarization filters composed of silicon materials.

1.
A.
Karabchevsky
,
A.
Mosayyebi
, and
A. V.
Kavokin
, “
Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles
,”
Light Sci. Appl.
5
,
e16164
(
2016
).
2.
A.
Karabchevsky
,
J. S.
Wilkinson
, and
M. N.
Zervas
, “
Transmittance and surface intensity in 3d composite plasmonic waveguides
,”
Opt. Express
23
,
14407
14423
(
2015
).
3.
A. B.
Evlyukhin
,
C.
Reinhardt
,
A.
Seidel
,
B. S.
Lukyanchuk
, and
B. N.
Chichkov
, “
Optical response features of Si-nanoparticle arrays
,”
Phys. Rev. B
82
,
045404
(
2010
).
4.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. H.
Fu
,
J.
Zhang
, and
B.
Lukyanchuk
, “
Magnetic light
,”
Sci. Rep.
2
,
492
(
2012
).
5.
S.
Jahani
and
Z.
Jacob
, “
All-dielectric metamaterials
,”
Nat. Nanotechnol.
11
,
23
36
(
2016
).
6.
E.
Betzig
and
J. K.
Trautman
, “
Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit
,”
Science
257
,
189
195
(
1992
).
7.
D. K.
Gramotnev
and
S. I.
Bozhevolnyi
, “
Plasmonics beyond the diffraction limit
,”
Nat. Photonics
4
,
83
(
2010
).
8.
A. B.
Evlyukhin
,
S. M.
Novikov
,
U.
Zywietz
,
R. L.
Eriksen
,
C.
Reinhardt
,
S. I.
Bozhevolnyi
, and
B. N.
Chichkov
, “
Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region
,”
Nano Lett.
12
,
3749
3755
(
2012
).
9.
A.
Garcia-Etxarri
,
R.
Gómez-Medina
,
L. S.
Froufe-Perez
,
C.
Lopez
,
L.
Chantada
,
F.
Scheffold
,
J.
Aizpurua
,
M.
Nieto-Vesperinas
, and
J. J.
Sáenz
, “
Strong magnetic response of submicron silicon particles in the infrared
,”
Opt. Express
19
,
4815
4826
(
2011
).
10.
Z.-J.
Yang
,
R.
Jiang
,
X.
Zhuo
,
Y.-M.
Xie
,
J.
Wang
, and
H.-Q.
Lin
, “
Dielectric nanoresonators for light manipulation
,”
Phys. Rep.
701
,
1
50
(
2017
).
11.
J. B.
Khurgin
,
G.
Sun
, and
R.
Soref
, “
Practical limits of absorption enhancement near metal nanoparticles
,”
Appl. Phys. Lett.
94
,
071103
(
2009
).
12.
J. D.
Jackson
,
Classical Electrodynamics
(
AAPT
,
1999
).
13.
P. D.
Terekhov
,
K. V.
Baryshnikova
,
Y. A.
Artemyev
,
A.
Karabchevsky
,
A. S.
Shalin
, and
A. B.
Evlyukhin
, “
Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges
,”
Phys. Rev. B
96
,
035443
(
2017
).
14.
P. D.
Terekhov
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
, “
Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution
,”
Opt. Lett.
42
,
835
838
(
2017
).
15.
A. E.
Krasnok
,
A. E.
Miroshnichenko
,
P. A.
Belov
, and
Y. S.
Kivshar
, “
All-dielectric optical nanoantennas
,”
Opt. Express
20
,
20599
20604
(
2012
).
16.
K. V.
Baryshnikova
,
A.
Novitsky
,
A. B.
Evlyukhin
, and
A. S.
Shalin
, “
Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range
,”
JOSA B
34
,
D36
D41
(
2017
).
17.
V.
Kozlov
,
D.
Filonov
,
A. S.
Shalin
,
B. Z.
Steinberg
, and
P.
Ginzburg
, “
Asymmetric backscattering from the hybrid magneto-electric meta particle
,”
Appl. Phys. Lett.
109
,
203503
(
2016
).
18.
D.
Markovich
,
K.
Baryshnikova
,
A.
Shalin
,
A.
Samusev
,
A.
Krasnok
,
P.
Belov
, and
P.
Ginzburg
, “
Enhancement of artificial magnetism via resonant bianisotropy
,”
Sci. Rep.
6
,
22546
(
2016
).
19.
A.
Katiyi
and
A.
Karabchevsky
, “
Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy
,”
J. Lightwave Technol.
35
,
2902
2908
(
2017
).
20.
N.
Bontempi
,
K. E.
Chong
,
H. W.
Orton
,
I.
Staude
,
D.-Y.
Choi
,
I.
Alessandri
,
Y. S.
Kivshar
, and
D. N.
Neshev
, “
Highly sensitive biosensors based on all-dielectric nanoresonators
,”
Nanoscale
9
,
4972
4980
(
2017
).
21.
T.
Wood
,
M.
Naffouti
,
J.
Berthelot
,
T.
David
,
J.-B.
Claude
,
L.
Métayer
,
A.
Delobbe
,
L.
Favre
,
A.
Ronda
,
I.
Berbezier
et al.
All-dielectric color filters using SiGe-based Mie resonator arrays
,”
ACS Photonics
4
,
873
883
(
2017
).
22.
C.-Y.
Yang
,
J.-H.
Yang
,
Z.-Y.
Yang
,
Z.-X.
Zhou
,
M.-G.
Sun
,
V. E.
Babicheva
, and
K.-P.
Chen
, “
Nonradiating silicon nanoantenna metasurfaces as narrowband absorbers
,”
ACS Photonics
5
,
2596
2601
(
2018
).
23.
P. D.
Terekhov
,
K. V.
Baryshnikova
,
Y.
Greenberg
,
Y. H.
Fu
,
A. B.
Evlyukhin
,
A. S.
Shalin
, and
A.
Karabchevsky
, “
Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation
,”
Sci. Rep.
9
,
3438
(
2019
).
24.
Y.
Galutin
,
E.
Falek
, and
A.
Karabchevsky
, “
Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer
,”
Sci. Rep.
7
,
12076
(
2017
).
25.
P. D.
Terekhov
,
V. E.
Babicheva
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
, “
Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect
,”
Phys. Rev. B
99
,
045424
(
2019
).
26.
K. V.
Baryshnikova
,
D. A.
Smirnova
,
B. S.
Luk’yanchuk
, and
Y. S.
Kivshar
, “
Optical anapoles: Concepts and applications
,”
Adv. Opt. Mater.
1801350
(published online).
27.
A. E.
Miroshnichenko
,
A. B.
Evlyukhin
,
Y. F.
Yu
,
R. M.
Bakker
,
A.
Chipouline
,
A. I.
Kuznetsov
,
B.
Luk’yanchuk
,
B. N.
Chichkov
, and
Y. S.
Kivshar
, “
Nonradiating anapole modes in dielectric nanoparticles
,”
Nat. Commun.
6
,
8069
(
2015
).
28.
K.
Baryshnikova
,
D.
Filonov
,
C.
Simovski
,
A.
Evlyukhin
,
A.
Kadochkin
,
E.
Nenasheva
,
P.
Ginzburg
, and
A. S.
Shalin
, “
Giant magnetoelectric field separation via anapole-type states in high-index dielectric structures
,”
Phys. Rev. B
98
,
165419
(
2018
).
29.
P.
Terekhov
,
K.
Baryshnikova
,
A.
Evlyukhin
, and
A.
Shalin
, “
Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids
,”
J. Phys. Conf. Ser.
929
,
012065
(
2017
).
30.
M.
Balezin
,
K. V.
Baryshnikova
,
P.
Kapitanova
, and
A. B.
Evlyukhin
, “
Electromagnetic properties of the great pyramid: First multipole resonances and energy concentration
,”
J. Appl. Phys.
124
,
034903
(
2018
).
31.
I.
Staude
and
J.
Schilling
, “
Metamaterial-inspired silicon nanophotonics
,”
Nat. Photonics
11
,
274
(
2017
).
32.
D. G.
Baranov
,
D. A.
Zuev
,
S. I.
Lepeshov
,
O. V.
Kotov
,
A. E.
Krasnok
,
A. B.
Evlyukhin
, and
B. N.
Chichkov
, “
All-dielectric nanophotonics: The quest for better materials and fabrication techniques
,”
Optica
4
,
814
825
(
2017
).
33.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk’yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
,
aag2472
(
2016
).
34.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
1998
), Vol. 3.
35.
A. B.
Evlyukhin
,
T.
Fischer
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles
,”
Phys. Rev. B
94
,
205434
(
2016
).
36.
R.
Alaee
,
C.
Rockstuhl
, and
I.
Fernandez-Corbaton
, “
An electromagnetic multipole expansion beyond the long-wavelength approximation
,”
Opt. Commun.
407
,
17
21
(
2018
).
37.
M. I.
Tribelsky
,
J.-M.
Geffrin
,
A.
Litman
,
C.
Eyraud
, and
F.
Moreno
, “
Small dielectric spheres with high refractive index as new multifunctional elements for optical devices
,”
Sci. Rep.
5
,
12288
(
2015
).
38.
R. E.
Raab
and
O. L.
De Lange
,
Multipole Theory in Electromagnetism
(
Oxford University
,
Clarendon, Oxford
,
2005
).
39.
D. W.
Pepper
and
J. C.
Heinrich
,
The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL
(
CRC Press
,
2017
).
40.
See www.comsol.com for more information about COMSOL Multiphysics.
41.
P. D.
Terekhov
,
H. K.
Shamkhi
,
E. A.
Gurvitz
,
K. V.
Baryshnikova
,
A. B.
Evlyukhin
,
A. S.
Shalin
, and
A.
Karabchevsky
, “
Broadband forward scattering from dielectric cubic nanoantenna in lossless media
,”
Opt. Express
27
,
10924
10935
(
2019
).
42.
E. A.
Gurvitz
,
K. S.
Ladutenko
,
P. A.
Dergachev
,
A. B.
Evlyukhin
,
A.
Miroshnichenko
, and
A. S.
Shalin
, “
The high-order toroidal moments and anapole states in all-dielectric photonics
,”
Laser Photo. Rev.
(published online).
43.
D. S.
Engstrom
,
B.
Porter
,
M.
Pacios
, and
H.
Bhaskaran
, “
Additive nanomanufacturing—A review
,”
J. Mater. Res.
29
,
1792
1816
(
2014
).
44.
J. T.
Sheu
,
S.
Yeh
,
C.
Wu
, and
K.
You
, “Fabrication of ultrahigh-density nano-pyramid arrays (NPAS) on (100) silicon wafer using scanning probe lithography and anisotropic wet etching,” in Proceedings of the 2nd IEEE Conference on Nanotechnology (IEEE, 2002), pp. 277–281.
45.
Y.-C.
Lien
,
Y.-H.
Pai
, and
G.-R.
Lin
, “
Si nano-dots and nano-pyramids dependent light emission and charge accumulation in ITO/SiOx/p-si MOS diode
,”
IEEE J. Quantum Electron.
46
,
121
127
(
2010
).
You do not currently have access to this content.