The geometry of a gallium phosphide nanowire (NW) array has been optimized for maximum current generation in a betavoltaic (BV) device. The energy capture efficiency for various device geometries with different radioisotope source compounds was calculated in GEANT4. A validation of GEANT4 for BV device simulation was performed by comparing a model output with the available bulk semiconductor BV performance data, followed by predictions of the performance of NW-based devices. The pitch and the diameter of the NWs were found to have the most significant impact on the β-generated current density, with the optimum diameter-to-pitch ratios ranging from 0.55 to 0.8, depending on the source. The energy capture efficiency improved when low energy beta (β) emitters were used. For devices utilizing 63Ni source compounds, the β-generated current densities approached 0.95 μA cm−2, representing an improvement by a factor as high as 5.8 compared to planar devices. In the case of 3H source compounds, the generated current density was 3.05 μA cm−2, a factor of 15.5 larger than comparable planar devices. However, NW devices utilizing sources with a higher decay energy, such as 147Pm, did not demonstrate any improvements over planar geometries. Using the results for optimum NW geometries, NW-based or other nanostructured devices could be made to surpass the present commercial BV batteries.

1.
F. K.
Manasse
,
J. J.
Pinajian
, and
A. N.
Tse
, “
Schottky barrier betavoltaic battery
,”
IEEE Trans. Nucl. Sci.
23
,
860
(
1976
).
2.
P.
Rappaport
, “
The electron-voltaic effect in p−n junctions induced by beta-particle bombardment
,”
Phys. Rev.
93
,
246
(
1954
).
3.
L. C.
Olsen
,
P.
Cabauy
, and
B. J.
Elkind
, “
Betavoltaic power sources
,”
Phys. Today
65
,
35
(
2012
).
4.
S. T.
Revankar
and
T. E.
Adams
, “
Advances in betavoltaic power sources
,”
J. Energy Power Sources
1
,
321
(
2014
).
5.
L. C.
Olsen
,
E. F.
Sverdrup
,
C. J.
Warde
,
R. L.
Eback
,
R.
Bünde
, and
J.
Raeder
, “
Betavoltaic energy conversion
,”
Energy Convers.
13
,
117
(
1973
).
6.
M. A.
Prelas
,
C. L.
Weaver
,
M. L.
Watermann
,
E. D.
Lukosi
,
R. J.
Schott
, and
D. A.
Wisniewski
, “
A review of nuclear batteries
,”
Prog. Nucl. Energy
75
,
117
(
2014
).
7.
A. V.
Sachenko
,
A. I.
Shkrebtii
,
R. M.
Korkishko
,
V. P.
Kostylyov
,
M. R.
Kulish
, and
I. O.
Sokolovskyi
, “
Efficiency analysis of betavoltaic elements
,”
Solid-State Electron.
111
,
147
(
2015
).
8.
J. P.
Clarkson
,
W.
Sun
,
K. D.
Hirschman
,
L. L.
Gadeken
, and
P. M.
Fauchet
, “
Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes
,”
Phys. Status Solidi (a)
204
,
1536
(
2007
).
9.
B.
Liu
,
K. P.
Chen
,
N. P.
Kherani
, and
S.
Zukotynski
, “
Power-scaling performance of a three-dimensional tritium betavoltaic diode
,”
Appl. Phys. Lett.
95
,
233112
(
2009
).
10.
W.
Sun
,
N. P.
Kherani
,
K. D.
Hirschman
,
L. L.
Gadeken
, and
P. M.
Fauchet
, “
A three-dimensional porous silicon p–n diode for betavoltaics and photovoltaics
,”
Adv. Mater.
17
,
1230
(
2005
).
11.
B.
Goldstein
, “
Electron-hole pair creation in gallium phosphide by α particles
,”
J. Appl. Phys.
36
,
3853
(
1965
).
12.
P. E.
Sims
,
L. C.
DiNetta
,
K. D.
Kavanagh
, and
M. A.
Goetz
, “
Gallium phosphide energy converters
,” in
Proceedings of the 14th Space Photovoltaic Research and Technology Conference
(NASA Lewis Research Center, Cleveland, OH, USA, 24–26 Oct
1995
), p.
231
.
13.
S.
McNamee
,
D.
Wagner
,
E. M.
Fiordaliso
,
D.
Novog
, and
R. R.
LaPierre
, “
GaP nanowire betavoltaic device
,”
Nanotechnology
30
,
075401
(
2018
).
14.
S.
Agostinelli
,
J.
Allison
,
K.
al Amako
,
J.
Apostolakis
,
H.
Araujo
,
P.
Arce
,
M.
Asai
 et al., “
GEANT4—A simulation toolkit
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
506
(
3
),
250
303
(
2003
).
15.
T.
Toshito
,
A.
Bagulya
,
A.
Lechner
,
A.
Ivanchenko
,
M.
Maire
,
T.
Akagi
, and
Y.
Tomohiro
, “
Validation of new Geant4 electromagnetic physics models for ion therapy applications
,”
Progr. Nucl. Sci. Technol.
2
,
918
(
2011
).
16.
S.
Theirrattanakul
and
M.
Prelas
, “
A methodology for efficiency optimization of betavoltaic cell design using an isotropic planar source having an energy dependent beta particle distribution
,”
Appl. Radiat. Isot.
127
,
41
(
2017
).
17.
M.
Wu
,
S.
Wang
,
Y.
Ou
, and
W.
Wang
, “
Optimization design of betavoltaic battery based on titanium tritide and silicon using Monte Carlo code
,”
Appl. Radiat. Isot.
142
,
22
(
2018
).
18.
X.
Tang
,
Y.
Liu
,
D.
Ding
, and
D.
Chen
, “
Optimization design of GaN betavoltaic microbattery
,”
Sci. China Technol. Sci.
55
,
659
(
2012
).
19.
R.
Bao
,
P. J.
Brand
, and
D. B.
Chrisey
, “
Betavoltaic performance of radiation-hardened high-efficiency Si space solar cells
,”
IEEE Trans. Electron Devices
59
,
1286
(
2012
).
20.
Z. J.
Cheng
,
H. S.
San
,
Z. H.
Feng
,
B.
Liu
, and
X. Y.
Chen
, “
High open-circuit voltage betavoltaic cell based on GaN pin homojunction
,”
Electron. Lett.
47
,
720
(
2011
).
21.
L. S.
Wei
, “
Parametric studies and optimization of the beta-voltaic cell—I. Short-circuit current
,”
Solid-State Electron.
17
,
1091
(
1974
).
22.
C.
Thomas
,
S.
Portnoff
, and
M. G.
Spencer
, “
High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes
,”
Appl. Phys. Lett.
108
,
013505
(
2016
).
23.
C. M.
Haapamaki
,
J.
Baugh
, and
R. R.
LaPierre
, “
Facilitating growth of InAs–InP core–shell nanowires through the introduction of Al
,”
J. Cryst. Growth
345
,
11
(
2012
).
24.
G.
Otnes
and
M. T.
Borgström
, “
Towards high efficiency nanowire solar cells
,”
Nano Today
12
,
31
(
2017
).
25.
B. M.
Adams
,
W. J.
Bohnhoff
,
K. R.
Dalbey
,
J. P.
Eddy
,
M. S.
Eldred
,
D. M.
Gay
,
K.
Haskell
,
Patricia D.
Hough
, and
L. P.
Swiler
. “
DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.8 user’s manual
,” Sandia National Laboratories, Technical Report SAND2010-2183 (
2018
).
26.
B.
Iooss
and
P.
Lemaître
, “
A review on global sensitivity analysis methods
,” in
Uncertainty Management in Simulation-Optimization of Complex Systems
, edited by G. Dellino and C. Meloni (
Springer
,
Boston, MA
,
2015
), pp.
101
122
.
27.
P. E.
Sims
,
L. C.
DiNetta
, and
A. M.
Barnett
. “
High efficiency GaP power conversion for betavoltaic applications
,” in
Proceedings of the XIII Space Photovoltaic Research and Technology Conference (SPRAT XIII), NASA CP-3278
(
NASA
,
Washington, DC
,
1994
), p.
373
.
28.
J.
Dixon
,
A.
Rajan
,
S.
Bohlemann
,
D.
Coso
,
A. D.
Upadhyaya
,
A.
Rohatgi
,
S.
Chu
,
A.
Majumdar
, and
S.
Yee
, “
Evaluation of a silicon 90 Sr betavoltaic power source
,”
Sci. Rep.
6
,
38182
(
2016
).
29.
J. C.
Lagarias
,
J. A.
Reeds
,
M. H.
Wright
, and
P. E.
Wright
, “
Convergence properties of the Nelder–Mead simplex method in low dimensions
,”
SIAM J. Optim.
9
,
112
(
1998
).
You do not currently have access to this content.