In order to protect high-field superconducting magnets during a quench with rapidly rising hot spot temperatures, it is important to have a quantitative understanding of quench behaviors of superconducting wires at high magnetic fields. In this article, we developed a two-dimensional numerical model of quench initiation and propagation in Bi2Sr2CaCu2Ox/Ag/Ag alloy (Bi2212) multifilamentary composite round wires with the H-formulation and the heat conduction equation. The results show that the minimum quench energy (MQE) of Bi2212 round wires decreases with increasing magnetic field and closely relates to the current sharing temperature (Tcs). For a constant ratio of the transport current to the critical current (It/Ic), the normal zone propagation velocity (NZPV) decreases with increasing magnetic field. However, the declining trend of NZPVs slows down beyond 10 T. Moreover, for a constant transport current It, the Ic and Tcs decrease with the increasing magnetic field, which results in a simultaneous increase of NZPV with a decrease of MQE.

1.
D. C.
Larbalestier
,
J.
Jiang
,
U. a.
Trociewitz
,
F.
Kametani
,
C.
Scheuerlein
,
M.
Dalban-Canassy
,
M.
Matras
,
P.
Chen
,
N.
Craig
, and
P.
Lee
,
Nat. Mater.
13
,
375
(
2014
).
2.
H.
Miao
,
K. R.
Marken
,
M.
Meinesz
,
B.
Czabaj
, and
S.
Hong
,
IEEE Trans. Appl. Supercond.
15
,
2554
(
2005
).
3.
J.
Schwartz
,
T.
Effio
,
X.
Liu
,
Q. V.
Le
,
A. L.
Mbaruku
,
H. J.
Schneider-Muntau
,
T.
Shen
,
H.
Song
,
U. P.
Trociewitz
, and
X.
Wang
,
IEEE Trans. Appl. Supercond.
18
,
70
(
2008
).
4.
H.
Miao
,
Y.
Huang
,
S.
Hong
, and
J. A.
Parrell
,
IEEE Trans. Appl. Supercond.
23
,
6400104
(
2013
).
5.
H.
Weijers
,
U.
Trociewitz
,
K.
Marken
,
M.
Meinesz
,
H.
Miao
, and
J.
Schwartz
,
Supercond. Sci. Technol.
17
,
636
(
2004
).
6.
H.
Maeda
and
Y.
Yanagisawa
,
IEEE Trans. Appl. Supercond.
24
,
1
(
2014
).
7.
T.
Shen
,
L.
Ye
,
D.
Turrioni
, and
P.
Li
,
Supercond. Sci. Technol.
28
,
075014
(
2015
).
8.
L.
Ye
,
F.
Hunte
, and
J.
Schwartz
,
Supercond. Sci. Technol.
26
,
055006
(
2013
).
9.
T.
Shen
,
L.
Ye
, and
P.
Li
,
Supercond. Sci. Technol.
29
,
08LT01
(
2016
).
10.
U.
Trociewitz
,
B.
Czabaj
,
S.
Hong
,
Y.
Huang
,
D.
Knoll
,
D.
Larbalestier
,
W.
Markiewicz
,
H.
Miao
,
M.
Meinesz
, and
X.
Wang
,
Supercond. Sci. Technol.
21
,
025015
(
2008
).
11.
Y.
Yang
,
E. A.
Young
,
I.
Falorio
,
W. O.
Bailey
,
C. M.
Friend
,
A.
Twin
, and
S. P.
Chappell
,
IEEE Trans. Appl. Supercond.
21
,
2432
(
2011
).
12.
K.
Zhang
,
H.
Higley
,
L.
Ye
,
S.
Gourlay
,
S.
Prestemon
,
T.
Shen
,
E.
Bosque
,
C.
English
,
J.
Jiang
, and
Y.
Kim
,
Supercond. Sci. Technol.
31
,
105009
(
2018
).
13.
L.
Ye
,
D.
Cruciani
,
T.
Effio
,
F.
Hunte
, and
J.
Schwartz
,
IEEE Trans. Appl. Supercond.
23
,
6400811
(
2013
).
14.
L.
Ye
,
P.
Li
,
T.
Shen
, and
J.
Schwartz
,
Supercond. Sci. Technol.
29
,
035010
(
2016
).
15.
Y.
Iwasa
,
Case Studies in Superconducting Magnets: Design and Operational Issues
(
Springer Science & Business Media
,
2009
).
16.
M.
Bonura
and
C.
Senatore
,
Appl. Phys. Lett.
108
,
242602
(
2016
).
17.
D.
Arbelaez
,
S.
Prestemon
,
D.
Dietderich
,
A.
Godeke
,
L.
Ye
,
F.
Hunte
, and
J.
Schwartz
,
IEEE Trans. Appl. Supercond.
21
,
2787
(
2011
).
18.
J.
Li
,
M.
Rong
,
Y.
Wu
, and
J.
Lou
,
IEEE Trans. Magn.
42
,
931
(
2006
).
19.
W. K.
Chan
,
P. J.
Masson
,
C.
Luongo
, and
J.
Schwartz
,
IEEE Trans. Appl. Supercond.
20
,
2370
(
2010
).
20.
W.-K.
Chan
,
P. J.
Masson
,
C. A.
Luongo
, and
J.
Schwartz
,
IEEE Trans. Appl. Supercond.
19
,
2490
(
2009
).
21.
M.
Casali
,
M.
Breschi
, and
P. L.
Ribani
,
IEEE Trans. Appl. Supercond.
25
,
1
(
2015
).
22.
Z.-F.
Jiang
,
X.-F.
Gou
, and
T.-M.
Shen
,
IEEE Trans. Appl. Supercond.
29
,
1
(
2019
).
23.
M.
Zhang
,
K.
Matsuda
, and
T.
Coombs
,
J. Appl. Phys.
112
,
043912
(
2012
).
24.
M.
Zhang
,
J.-H.
Kim
,
S.
Pamidi
,
M.
Chudy
,
W.
Yuan
, and
T.
Coombs
,
J. Appl. Phys.
111
,
083902
(
2012
).
25.
Z.-F.
Jiang
,
F.
Xue
, and
X.-F.
Gou
,
Physica C
547
,
69
(
2018
).
26.
V.
Romanovskii
and
K.
Watanabe
,
Physica C
420
,
99
(
2005
).
27.
V.
Romanovskii
,
Supercond. Sci. Technol.
23
,
025020
(
2009
).
28.
V. M.
Zermeno
,
F.
Grilli
, and
F.
Sirois
,
Supercond. Sci. Technol.
26
,
052001
(
2013
).
29.
Z.
Hong
,
Q.
Jiang
,
R.
Pei
,
A.
Campbell
, and
T.
Coombs
,
Supercond. Sci. Technol.
20
,
331
(
2007
).
30.
T.
Shen
,
A.
Ghosh
,
L.
Cooley
, and
J.
Jiang
,
J. Appl. Phys.
113
,
213901
(
2013
).
31.
F.
Kametani
,
T.
Shen
,
J.
Jiang
,
C.
Scheuerlein
,
A.
Malagoli
,
M.
Di Michiel
,
Y.
Huang
,
H.
Miao
,
J.
Parrell
, and
E.
Hellstrom
,
Supercond. Sci. Technol.
24
,
075009
(
2011
).
32.
T.
Shen
,
J.
Jiang
,
F.
Kametani
,
U.
Trociewitz
,
D.
Larbalestier
,
J.
Schwartz
, and
E.
Hellstrom
,
Supercond. Sci. Technol.
23
,
025009
(
2009
).
33.
X.-F.
Gou
,
P.-J.
Zhuo
,
X.-x.
Zhou
, and
J.
Schwartz
,
Comput. Mater. Sci.
158
,
219
(
2019
).
34.
P.
Li
,
L.
Ye
,
J.
Jiang
, and
T.
Shen
,
RRR and Thermal Conductivity of Ag and Ag-0.2 wt. % Mg Alloy in Ag/Bi-2212 Wires
(
IOP Publishing
,
2015
), p.
012027
.
35.
H.
Lim
and
Y.
Iwasa
,
Cryogenics
37
,
789
(
1997
).
36.
D. R.
Smith
and
F.
Fickett
,
J. Res. Natl. Inst. Stand. Technol.
100
,
119
(
1995
).
37.
Y.
Ando
,
J.
Takeya
,
Y.
Abe
,
K.
Nakamura
, and
A.
Kapitulnik
,
Phys. Rev. B
62
,
626
(
2000
).
38.
See https://srdata.nist.gov/CeramicDataPortal/hit for the information about NIST High Temperature Superconducting Materials (HTS) Database.
You do not currently have access to this content.