We study the effect of the addition of p- or n-type doping gases, trimethylboron (TMB) or phosphine, respectively, on cluster formation in the SiH4/H2 plasma used for the deposition of hydrogenated polymorphous silicon thin films. The formation of clusters is monitored using time-resolved measurements of the second harmonic of the radio frequency current J2. We show that the addition of PH3 does not change the cluster formation, while the addition of a small amount of trimethylboron strongly affects its charging behavior, preventing to some extent its agglomeration. The most ordered pm-Si:H thin films are obtained under conditions from which not only clusters but also larger silicon agglomerates are formed in the plasma and contribute to the deposition. The inhibiting role of TMB on the agglomeration and powder formation is evidenced by the smoothness of p-type films at high rates, as deduced from the sample surface topography obtained by atomic force microscopy measurements.

1.
U.
Kroll
,
J.
Meier
,
A.
Shah
,
S.
Mikhailov
, and
J.
Weber
, “
Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution
,”
J. Appl. Phys.
80
(
9
),
4971
4975
(
1996
).
2.
P.
Roca i Cabarrocas
,
T.
Nguyen-Tran
,
Y.
Djeridane
,
A.
Abramov
,
E.
Johnson
, and
G.
Patriarche
, “
Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices
,”
J. Phys. Appl. Phys.
40
(
8
),
2258
2266
(
2007
).
3.
K.-H.
Kim
,
E. V.
Johnson
,
A. G.
Kazanskii
,
M. V.
Khenkin
, and
P.
Roca i Cabarrocas
, “
Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films
,”
Sci. Rep.
7
,
40553
(
2017
).
4.
M.
Meaudre
 et al, “
Midgap density of states in hydrogenated polymorphous silicon
,”
J. Appl. Phys.
86
(
2
),
946
950
(
1999
).
5.
E. A.
Schiff
, “
Hole mobilities and the physics of amorphous silicon solar cells
,”
J. Non Cryst. Solids
352
(
9
),
1087
1092
(
2006
).
6.
F.
Templier
 et al, “
Polymorphous silicon: A promising material for thin-film transistors for low-cost and high-performance active-matrix OLED displays
,”
IEICE Trans. Electron.
93-C
(
10
),
1490
1494
(
2010
).
7.
K.-H.
Kim
,
S.
Kasouit
,
E. V.
Johnson
, and
P.
Roca i Cabarrocas
, “
Substrate versus superstrate configuration for stable thin film silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
119
,
124
128
(
2013
).
8.
H.
Águas
 et al, “
Large area deposition of polymorphous silicon by plasma enhanced chemical vapor deposition at 27.12 MHz and 13.56 MHz
,”
Jpn. J. Appl. Phys.
42
(
8, Part 1
),
4935
4942
(
2003
).
9.
A.
Remolina
 et al, “
Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor
,”
Nanotechnology
20
(
24
),
245604
(
2009
).
10.
A. V.
Kharchenko
,
V.
Suendo
,
D.
Daineka
, and
P.
Roca i Cabarrocas
, “
Effect of dopants on the dynamic of powder formation and the properties of polymorphous silicon thin films
,”
Mater. Sci. Forum
455–456
,
536
539
(
2004
).
11.
S.
Abolmasov
,
P.
Roca i Cabarrocas
, and
P.
Chatterjee
, “
Towards 12% stabilised efficiency in single junction polymorphous silicon solar cells: Experimental developments and model predictions
,”
EPJ Photovolt.
7
(
2016
).
12.
E.
Kalered
,
N.
Brenning
,
I.
Pilch
,
L.
Caillault
,
T.
Minéa
, and
L.
Ojamäe
, “
On the work function and the charging of small (r ≤ 5 nm) nanoparticles in plasmas
,”
Phys. Plasmas
24
(
1
),
013702
(
2017
).
13.
A. V.
Kharchenko
,
V.
Suendo
, and
P.
Roca i Cabarrocas
, “
Plasma studies under polymorphous silicon deposition conditions
,”
Thin Solid Films
427
(
1–2
),
236
240
(
2003
).
14.
A.
Fontcuberta i Morral
,
P.
Roca i Cabarrocas
, and
C.
Clerc
, “
Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements
,”
Phys. Rev. B
69
(
12
),
125307
(
2004
).
15.
J.
Ebothé
and
S.
Vilain
, “
Surface roughness and morphology of Co-(Fe and Ni) binary alloy electrodeposits studied by atomic force microscopy
,”
J. Phys. Appl. Phys.
32
(
18
),
2342
2353
(
1999
).
16.
L.
Nzoghe-Mendome
,
J.
Ebothé
,
A.
Aloufy
, and
I. V.
Kityk
, “
Role of substrate on topography features of nickel deposited nanostructures
,”
J. Alloys Compd.
459
(
1
),
232
238
(
2008
).
17.
A.
Bouchoule
,
Dusty Plasmas. Physics, Chemistry and Technological Impacts in Plasma Processing
(
John Willey & Sons
,
1999
).
18.
J.
Perrin
,
C.
Bohm
,
R.
Etemadi
, and
A.
Lloret
, “
Possible routes for cluster growth and particle formation in RF silane discharges
,”
Plasma Sources Sci. Technol.
3
(
3
),
252
261
(
1994
).
19.
L.
Boufendi
,
M. C.
Jouanny
,
E.
Kovacevic
,
J.
Berndt
, and
M.
Mikikian
, “
Dusty plasma for nanotechnology
,”
J. Phys. Appl. Phys.
44
(
17
),
174035
(
2011
).
20.
U. V.
Bhandarkar
,
M. T.
Swihart
,
S. L.
Girshick
, and
U. R.
Kortshagen
, “
Modelling of silicon hydride clustering in a low-pressure silane plasma
,”
J. Phys. Appl. Phys.
33
(
21
),
2731
2746
(
2000
).
21.
Ł
Borowik
,
T.
Nguyen-Tran
,
P.
Roca i Cabarrocas
, and
T.
Mélin
, “
Doped semiconductor nanocrystal junctions
,”
J. Appl. Phys.
114
(
20
),
204305
(
2013
).
22.
T.
Matsoukas
and
M.
Russell
, “
Particle charging in low-pressure plasmas
,”
J. Appl. Phys.
77
(
9
),
4285
4292
(
1995
).
23.
S. N.
Abolmasov
,
L.
Kroely
, and
P.
Roca i Cabarrocas
, “
Negative corona discharge: Application to nanoparticle detection in RF reactors
,”
Plasma Sources Sci. Technol.
18
(
1
),
015005
(
2008
).
24.
G. E.
Jellison
and
F. A.
Modine
, “
Parameterization of the optical functions of amorphous materials in the interband region
,”
Appl. Phys. Lett.
69
(
3
),
371
373
(
1996
).
25.
G. E.
Jellison
and
F. A.
Modine
, “
Erratum: ‘Parameterization of the optical functions of amorphous materials in the interband region’ [Appl. Phys. Lett. 69, 371 (1996)]
,”
Appl. Phys. Lett.
69
(
14
),
2137
2137
(
1996
).
26.
J.
Perrin
,
Y.
Takeda
,
N.
Hirano
,
Y.
Takeuchi
, and
A.
Matsuda
, “
Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane
,”
Surf. Sci.
210
(
1
),
114
128
(
1989
).
27.
V.
Suendo
and
P.
Roca i Cabarrocas
, “
Plasma diagnostics in silane–methane–hydrogen plasmas under pm-Si1−xCx:H deposition conditions: Correlation with film properties
,”
J. Non Cryst. Solids
352
(
9
),
959
963
(
2006
).
28.
R.
Jiménez
 et al, “
Effect of pressure and flow rates on polymorphous silicon-germanium (pm-SixGe1−x:H) thin films for infrared detection applications
,”
Phys. Status Solidi A
215
(
12
),
1700735
(
2018
).
29.
M. E.
Gueunier
 et al, “
Properties of polymorphous silicon–germanium alloys deposited under high hydrogen dilution and at high pressure
,”
J. Appl. Phys.
92
(
9
),
4959
4967
(
2002
).
30.
E. A. G.
Hamers
,
A.
Fontcuberta i Morral
,
C.
Niikura
,
R.
Brenot
, and
P.
Roca i Cabarrocas
, “
Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films
,”
J. Appl. Phys.
88
(
6
),
3674
3688
(
2000
).
31.
N.
Chaâbane
,
V.
Suendo
,
H.
Vach
, and
P.
Roca i Cabarrocas
, “
Soft landing of silicon nanocrystals in plasma enhanced chemical vapor deposition
,”
Appl. Phys. Lett.
88
(
20
),
203111
(
2006
).
You do not currently have access to this content.