We investigate the terahertz optical properties of VO2 (M) films synthesized hydrothermally on a c-sapphire substrate by a two-step method. The terahertz transmittance is greater than 70% for the insulating state of monoclinic VO2 films, and the average modulation depth approaches 94% for frequencies of 0.2–2.0 THz. A sample prepared using 450 °C postannealing undergoes a sharp insulator–metal transition around 61 °C at 1.5 THz with a 97% modulation depth. Furthermore, the effects of the postannealing temperature on the structure, morphology, and phase-transition properties of VO2 film/c-sapphire samples are presented. The results show that the hydrothermal synthesis of VO2 polymorphs has potential applications in the terahertz wavelength range.

1.
H. T.
Chen
,
W. J.
Padilla
,
M. J.
Cich
,
A. K.
Azad
,
R. D.
Averitt
, and
A. J.
Taylor
,
Nat. Photonics
3
,
148
151
(
2009
).
2.
S. F.
Busch
,
S.
Schumann
,
C.
Jansen
,
M.
Scheller
,
M.
Koch
, and
B. M.
Fischer
,
Appl. Phys. Lett.
100
,
124
166
(
2012
).
3.
Y.
Xiao
,
Z. H.
Zhai
,
Q. W.
Shi
,
L. G.
Zhu
,
J.
Li
,
W. X.
Huang
,
F.
Yue
,
Y. Y.
Hu
,
Q. X.
Peng
, and
Z. R.
Li
,
Appl. Phys. Lett.
107
,
031906
(
2015
).
4.
M. N. F.
Hoque
,
G.
Karaoglan-Bebek
,
M.
Holtz
,
A. A.
Bernussi
, and
Z.
Fan
,
Opt. Commun.
350
,
309
314
(
2015
).
5.
Q.
Shi
,
W.
Huang
,
J.
Wu
, and
Y.
Zhang
,
J. Appl. Phys.
112
,
033523
(
2012
).
6.
B.
Viswanath
,
C.
Ko
,
Z.
Yang
, and
S.
Ramanathan
,
J. Appl. Phys.
109
,
063512
(
2011
).
7.
C.
Chen
,
Y.
Zhu
,
Y.
Zhao
,
J. H.
Lee
,
H.
Wang
,
A.
Bernussi
,
M.
Holtz
, and
Z.
Fan
,
Appl. Phys. Lett.
97
,
597
(
2010
).
8.
F.
Fan
,
Y.
Hou
,
Z. W.
Jiang
,
X. H.
Wang
, and
S. J.
Chang
,
Appl. Opt.
51
,
4589
(
2012
).
9.
J. H.
Shin
,
K.
Moon
,
E. S.
Lee
,
I. M.
Lee
, and
K. H.
Park
,
Nanotechnology
26
,
315203
(
2015
).
10.
G. C.
Zhou
,
P. H.
Dai
,
J. B.
Wu
,
B. B.
Jin
,
Q. Y.
Wen
,
G. H.
Zhu
,
Z.
Shen
,
C. H.
Zhang
,
L.
Kang
,
W. W.
Xu
,
J.
Chen
, and
P. H.
Wu
,
Opt. Express
25
,
17322
(
2017
).
11.
C. R.
Han
,
E. P. J.
Parrott
,
G.
Humbert
,
A.
Crunteanu
, and
E. P.-M.
Pherson
,
Sci. Rep.
7
,
12725
(
2017
).
12.
M.
Li
,
S.
Magdassi
,
Y. F.
Gao
, and
Y.
Long
,
Small
13
,
1701147
(
2017
).
13.
G. P.
Pan
,
J. H.
Yin
,
K. L.
Ji
,
X.
Li
,
X. W.
Cheng
,
H. B.
Jin
, and
J. P.
Liu
,
Sci. Rep.
7
,
6132
(
2017
).
14.
C.
Zhang
,
W.
Cao
,
A. V.
Adedeji
, and
H. E.
Elsayed-Ali
,
J. Sol-Gel Sci. Technol.
69
,
320
324
(
2014
).
15.
C.
Cao
,
Y.
Gao
, and
H.
Luo
,
J. Phys. Chem. C
48
,
18810
18814
(
2008
).
16.
D.
Alie
,
L.
Gedvilas
,
Z.
Wang
,
R.
Tenent
,
C.
Engtrakul
,
Y.
Yan
,
S. E.
Shaheen
,
A. C.
Dillon
, and
C.
Ban
,
J. Solid State Chem.
212
,
237
241
(
2014
).
17.
R.
Li
,
S.
Ji
,
Y.
Li
,
Y.
Gao
,
H.
Luo
, and
P.
Jin
,
Mater. Lett.
110
,
241
244
(
2013
).
18.
C.
Wu
,
X.
Zhang
,
J.
Dai
,
J.
Yang
,
Z.
Wu
,
S.
Wei
, and
Y.
Xie
,
J. Mater. Chem.
21
,
4509
4517
(
2011
).
19.
Y.
Zhang
,
C.
Chen
,
J.
Zhang
,
L.
Hu
,
W.
Wu
,
Y.
Zhong
,
Y.
Cao
,
X.
Liu
, and
C.
Huang
,
Curr. Appl. Phys.
13
,
47
52
(
2013
).
20.
B.
Dong
,
N.
Shen
,
C.
Cao
,
Z.
Chen
,
H.
Luo
, and
Y.
Gao
,
Crystengcomm
18
,
558
(
2016
).
21.
O.
Srirodpai
,
J.
Wootthikanokkhan
,
S.
Nawalertpanya
,
K.
Yuwawech
, and
V.
Meeyoo
,
Materials
10
,
53
(
2017
).
22.
J.
Zhang
,
J.
Li
,
P.
Chen
,
F.
Rehman
,
Y.
Jiang
,
M.
Cao
,
Y.
Zhao
, and
H.
Jin
,
Sci. Rep.
6
,
31018
(
2016
).
23.
S.
Dou
,
Y.
Wang
,
X.
Zhang
,
Y.
Tian
,
X.
Hou
,
J.
Wang
,
X.
Li
,
J.
Zhao
, and
Y.
Li
,
Sol. Energy Mater. Sol. Cells
160
,
164
173
(
2017
).
24.
J. H.
Son
,
J.
Wei
,
D.
Cobden
,
G.
Cao
, and
Y.
Xia
,
Chem. Mater.
22
,
3043
3050
(
2010
).
25.
G.
Li
,
K.
Chao
,
H.
Peng
,
K.
Chen
, and
Z.
Zhang
,
Inorg. Chem.
46
,
5787
90
(
2007
).
26.
H.
Wang
,
J. Q.
Guo
, and
Y. S.
Zhou
,
Carbon
64
,
67
71
(
2013
).
27.
Y.
Liu
,
H.
Wang
, and
Z. C.
Wei
,
AIP Adv.
7
,
085303
(
2017
).
You do not currently have access to this content.