We investigated the structural stability and electronic properties of stanene/graphene-like nitride (stanene/XN, X=Al, B, and Ga) heterostructures using first-principles calculations. The results reveal that stanene interacts with BN (GaN) via van der Waals interactions with a binding energy of 93 meV (171 meV) per Sn atom. In contrast, the stanene/AlN heterostructure shows a strong interlayer coupling, with a binding energy of 315 meV per Sn atom. The electronic structure of stanene/GaN shows a direct bandgap of 213 meV at the Dirac point. The stanene/AlN and stanene/GaN heterostructures have Schottky barriers of 1.383 and 1.243 eV, respectively, with p-type Schottky contacts. In addition, an n-type Schottky contact is formed in the stanene/BN heterostructure with a Schottky barrier of 2.812 eV. The results suggest that the studied heterostructures are potential candidates for stanene-based nanoelectronic applications.

1.
B.
Luo
,
B.
Wang
,
X.
Li
,
Y.
Jia
,
M.
Liang
, and
L.
Zhi
,
Adv. Mater.
24
,
3538
(
2012
).
2.
I.
Choudhuri
,
S.
Kumar
,
A.
Mahata
,
K. S.
Rawat
, and
B.
Pathak
,
Nanoscale
8
,
14117
(
2016
).
3.
P.
Miró
,
M.
Audiffred
, and
T.
Heine
,
Chem. Soc. Rev.
43
,
6537
(
2014
).
4.
Y.
Wang
,
M.
Miao
,
J.
Lv
,
L.
Zhu
,
K.
Yin
,
H.
Liu
, and
Y.
Ma
,
J. Chem. Phys.
137
,
224108
(
2012
).
5.
S.
Balendhran
,
S.
Walia
,
H.
Nili
,
S.
Sriram
, and
M.
Bhaskaran
,
Small
11
,
640
(
2015
).
6.
M.
Ezawa
,
J. Supercond. Nov. Magn.
28
,
1249
(
2015
).
7.
F.-F.
Zhu
,
W.-J.
Chen
,
Y.
Xu
,
C.-L.
Gao
,
D.-D.
Guan
,
C.-H.
Liu
,
D.
Qian
,
S.-C.
Zhang
, and
J.-F.
Jia
,
Nat. Mater.
14
,
1020
(
2015
).
8.
C.-C.
Liu
,
H.
Jiang
, and
Y.
Yao
,
Phys. Rev. B
84
,
195430
(
2011
).
9.
Y.
Xu
,
B.
Yan
,
H.-J.
Zhang
,
J.
Wang
,
G.
Xu
,
P.
Tang
,
W.
Duan
, and
S.-C.
Zhang
,
Phys. Rev. Lett.
111
,
136804
(
2013
).
10.
W.
Xiong
,
C.
Xia
,
T.
Wang
,
Y.
Peng
, and
Y.
Jia
,
J. Phys. Chem. C
120
,
10622
(
2016
).
11.
X.
Chen
,
L.
Li
, and
M.
Zhao
,
Phys. Chem. Chem. Phys.
17
,
16624
(
2015
).
12.
C.-H.
Lee
,
G.-H.
Lee
,
A. M.
Van Der Zande
,
W.
Chen
,
Y.
Li
,
M.
Han
,
X.
Cui
,
G.
Arefe
,
C.
Nuckolls
,
T. F.
Heinz
et al.,
Nat. Nanotech.
9
,
676
(
2014
).
14.
E.
Wang
,
X.
Lu
,
S.
Ding
,
W.
Yao
,
M.
Yan
,
G.
Wan
,
K.
Deng
,
S.
Wang
,
G.
Chen
,
L.
Ma
et al.,
Nat. Phys.
12
,
1111
(
2016
).
15.
X.
Chen
,
R.
Meng
,
J.
Jiang
,
Q.
Liang
,
Q.
Yang
,
C.
Tan
,
X.
Sun
,
S.
Zhang
, and
T.
Ren
,
Phys. Chem. Chem. Phys.
18
,
16302
(
2016
).
16.
M.
Wang
,
L.
Liu
,
C.-C.
Liu
, and
Y.
Yao
,
Phys. Rev. B
93
,
155412
(
2016
).
17.
Y.
Fan
,
M.
Zhao
,
Z.
Wang
,
X.
Zhang
, and
H.
Zhang
,
Appl. Phys. Lett.
98
,
083103
(
2011
).
18.
J.
Sławińska
,
I.
Zasada
, and
Z.
Klusek
,
Phys. Rev. B
81
,
155433
(
2010
).
19.
Y.
Lu
,
P.
He
, and
Y.
Feng
,
J. Phys. Chem. C
112
,
12683
(
2008
).
20.
A.
Nagashima
,
N.
Tejima
,
Y.
Gamou
,
T.
Kawai
, and
C.
Oshima
,
Phys. Rev. B
51
,
4606
(
1995
).
21.
P.
Tsipas
,
S.
Kassavetis
,
D.
Tsoutsou
,
E.
Xenogiannopoulou
,
E.
Golias
,
S.
Giamini
,
C.
Grazianetti
,
D.
Chiappe
,
A.
Molle
,
M.
Fanciulli
et al.,
Appl. Phys. Lett.
103
,
251605
(
2013
).
22.
S.
Alamé
,
A. N.
Quezada
,
D.
Skuridina
,
C.
Reich
,
D.
Henning
,
M.
Frentrup
,
T.
Wernicke
,
I.
Koslow
,
M.
Kneissl
,
N.
Esser
et al.,
Mater. Sci. Semicond. Process.
55
,
7
(
2016
).
23.
C. E.
Dreyer
,
A.
Janotti
,
C. G.
Van de Walle
, and
D.
Vanderbilt
,
Phys. Rev. X
6
,
021038
(
2016
).
24.
P.
Giannozzi
,
J. Phys. Condens. Matter
21
,
395502
(
2009
).
25.
R.
Sabatini
,
T.
Gorni
, and
S.
de Gironcoli
,
Phys. Rev. B
87
,
041108
(
2013
).
26.
T.
Björkman
,
A.
Gulans
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
,
Phys. Rev. Lett.
108
,
235502
(
2012
).
27.
A.
Dal Corso
,
Comput. Mater. Sci.
95
,
337
(
2014
).
28.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
29.
M.
Methfessel
and
A.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
30.
S.
Saxena
,
R. P.
Chaudhary
, and
S.
Shukla
,
Sci. Rep.
6
,
31073
(
2016
).
31.
J. C.
Garcia
,
D. B.
de Lima
,
L. V.
Assali
, and
J. F.
Justo
,
J. Phys. Chem. C
115
,
13242
(
2011
).
32.
A. I.
Khan
,
R.
Paul
, and
S.
Subrina
,
RSC Adv.
7
,
44780
(
2017
).
33.
H.
Zheng
,
X.-B.
Li
,
N.-K.
Chen
,
S.-Y.
Xie
,
W. Q.
Tian
,
Y.
Chen
,
H.
Xia
,
S.
Zhang
, and
H.-B.
Sun
,
Phys. Rev. B
92
,
115307
(
2015
).
34.
M. S.
Prete
,
A.
Mosca Conte
,
P.
Gori
,
F.
Bechstedt
, and
O.
Pulci
,
Appl. Phys. Lett.
110
,
012103
(
2017
).
35.
A.
Catellani
,
M.
Posternak
,
A.
Baldereschi
,
H.
Jansen
, and
A.
Freeman
,
Phys. Rev. B
32
,
6997
(
1985
).
36.
V.
Mansurov
,
T.
Malin
,
Y.
Galitsyn
, and
K.
Zhuravlev
,
J. Cryst. Growth
428
,
93
(
2015
).
37.
B.
Huang
and
H.
Lee
,
Phys. Rev. B
86
,
245406
(
2012
).
38.
W.
Xiong
,
C.
Xia
,
Y.
Peng
,
J.
Du
,
T.
Wang
,
J.
Zhang
, and
Y.
Jia
,
Phys. Chem. Chem. Phys.
18
,
6534
(
2016
).
39.
M.
Modarresi
,
A.
Kakoee
,
Y.
Mogulkoc
, and
M.
Roknabadi
,
Comput. Mater. Sci.
101
,
164
(
2015
).
40.
P.
Lu
,
L.
Wu
,
C.
Yang
,
D.
Liang
,
R.
Quhe
,
P.
Guan
, and
S.
Wang
,
Sci. Rep.
7
,
3912
(
2017
).
41.
V.
Nagarajan
and
R.
Chandiramouli
,
Superlattices Microstruct.
107
,
118
(
2017
).
42.
R. T.
Tung
,
Appl. Phys. Rev.
1
,
011304
(
2014
).
You do not currently have access to this content.