Orthoferrites are the model systems for understanding the origin of complex valance-skipping charge ordering (CO) associated with antiferromagnetic spin ordering as a sequence of Fe+3Fe+3Fe+5Fe+3Fe+3Fe+5 … along the pseudocubic (111) direction. Here, we have investigated the low-energy dynamics of one such system La1/3Sr2/3FeO3 along the (111) crystal orientation using terahertz (THz) time domain spectroscopy. The temperature dependent THz optical constants reveal a purely electronic semiconductor to a charge-ordered Mott insulator transition, which is contrary to the reported metal–insulator transition. Above the transition of ∼180 K, THz conductivity shows a thermally activated charge-carrier hopping type conduction with activation energy 92.7 meV (87.3 meV) when measured in cooling (heating). The dielectric constant also indicates that the charge ordering formation starts at 200 K, which exists down to 20 K. Further analysis shows a reduction in the effective number of carriers by a fraction of about six as temperature decreases from 300 K to the CO transition at 200 K; this depletion of carriers triggers the intersite interactions required for CO. These findings suggest that a high dielectric constant associated with charge order in the THz region could be useful for THz applications in communication.

1.
E. H.
da Silva Neto
,
P.
Aynajian
,
A.
Frano
,
R.
Comin
,
E.
Schierle
,
E.
Weschke
,
A.
Gyenis
,
J.
Wen
,
J.
Schneeloch
,
Z.
Xu
,
S.
Ono
,
G.
Gu
,
M.
Le Tacon
, and
A.
Yazdani
,
Science
343
,
393
(
2014
).
2.
C.
Sen
,
G.
Alvarez
, and
E.
Dagotto
,
Phys. Rev. Lett.
98
,
127202
(
2007
).
3.
A.
Pimenov
,
S.
Tachos
,
T.
Rudolf
,
A.
Loidl
,
D.
Schupp
,
M.
Sing
,
R.
Classen
, and
V. A. M.
Brabers
,
Phys. Rev. B
72
,
035131
(
2005
).
4.
R.
Rana
,
P.
Pandey
,
V. E.
Phanindra
,
S. S.
Prahu
, and
D. S.
Rana
,
Phys. Rev. B
97
,
045123
(
2018
).
5.
K.
Yamamoto
,
Y.
Hirata
,
M.
Horio
,
Y.
Yokoyama
,
K.
Takubo
,
M.
Minohara
,
H.
Kumigashira
,
Y.
Yamasaki
,
H.
Nakao
,
Y.
Murakami
,
A.
Fujimori
, and
H.
Wadati
,
Phys. Rev. B
97
,
075134
(
2018
).
6.
M.
Coey
,
Nature
430
,
155
(
2004
).
7.
H.
Terletska
,
T.
Chen
, and
E.
Gull
,
Phys. Rev. B
95
,
115149
(
2017
).
8.
I. V.
Solovyev
,
Phys. Rev. Lett.
91
,
177201
(
2003
).
9.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
,
Rev. Mod. Phys.
70
,
1039
(
1998
).
10.
X. G.
Li
,
R. K.
Zheng
,
G.
Li
,
H. D.
Zhou
,
R. X.
Huang
,
J. Q.
Xie
, and
Z. D.
Wang
,
Europhys. Lett.
60
,
670
(
2002
).
11.
P.
Lunkenheimer
,
S.
Krohns
,
S.
Riegg
,
S. G.
Ebbinghaus
,
A.
Reller
, and
A.
Loidl
,
Eur. Phys. J. Spec. Top.
180
,
61
(
2010
).
12.
P. H.
Bolivar
,
M.
Brucherseifer
,
J. G.
Rivas
,
R.
Gonzalo
,
I.
Ederra
,
A. L.
Reynolds
,
M.
Holker
, and
P.
De Maagt
,
IEEE Trans. Microw. Theory Tech.
51
,
1062
(
2003
).
13.
C.
Dupas
,
S.
Guillemet-Fritsch
,
P.-M.
Geffroy
,
T.
Chartier
,
M.
Baillergeau
,
J.
Mangeney
,
J.-F.
Roux
,
J.-P.
Ganne
,
S.
Marcellin
,
A.
Degiron
, and
E.
Akmansoy
,
Sci. Rep.
8
,
15275
(
2018
).
14.
T.
Okuda
,
A.
Asamitsu
,
Y.
Tomioka
,
T.
Kimura
,
Y.
Taguchi
, and
Y.
Tokura
,
Phys. Rev. Lett.
81
,
3203
(
1998
).
15.
H. M.
Aarbogh
,
J.
Wu
,
L.
Wang
,
H.
Zheng
,
J. F.
Mitchell
, and
C.
Leighton
,
Phys. Rev. B
74
,
134408
(
2006
).
16.
S. K.
Park
,
T.
Ishikawa
, and
Y.
Tokura
,
Phys. Rev. B
60
,
10788
(
1999
).
17.
J. B.
Yang
,
X. D.
Zhou
,
A.
Chu
,
W. M.
Hikal
,
Q.
Cai
,
J. C.
Ho
,
D. C.
Kundaliya
,
W. B.
Yelon
,
W. J.
James
,
H. U.
Anderson
,
H. H.
Hamdeh
, and
S. K.
Malik
,
J. Phys. Condens. Matter
15
,
5093
(
2003
).
18.
J. Q.
Li
,
Y.
Matsui
,
S. K.
Park
, and
Y.
Tokura
,
Phys. Rev. Lett
79
,
297
(
1997
).
19.
J.
Blasco
,
B.
Aznar
,
J.
García
,
G.
Subías
,
J. H.
Martin
, and
J.
Stankiewicz
,
Phys. Rev. B
77
,
054107
(
2008
).
20.
J.
Matsumo
,
T.
Mizokawa
,
A.
Fujimori
,
K.
Mamiya
,
Y.
Takeda
,
S.
Kawasaki
, and
M.
Takano
,
Phys. Rev. B
60
,
4605
(
1999
).
21.
T. S.
Dasgupta
,
Z. S.
Popovie
, and
S.
Satpathy
,
Phys. Rev. B
72
,
045143
(
2005
).
22.
J. H.
Martin
,
G.
Subias
,
J.
Garcia
,
J.
Blasco
, and
M. C.
Sánchez
,
Phys. Rev. B
79
,
045121
(
2009
).
23.
T.
Ishikawa
,
S. K.
Park
,
T.
Katsufuji
,
T.
Arima
, and
Y.
Tokura
,
Phys. Rev. B
58
,
13326(R)
(
1998
).
24.
A.
Pimenov
,
M.
Biberacher
,
D.
Ivannikov
,
A.
Loidl
,
A. A.
Mukhin
,
Y. G.
Goncharov
, and
A. M.
Balbashov
,
Phys. Rev. B
73
,
220407(R)
(
2006
).
25.
K. L.
Ngai
,
A. K.
Johscher
, and
C. T.
White
,
Nature
277
,
185
(
1979
).
26.
Kramers–Kronig analysis to Eq. (1) gives the following expression for the dielectric constant: ε1(υ)=σ1(υ)σdc2πυε0tansπ2(υ/υ1)s1cossπ2sin(s+1)π4+υυ12cos(s+1)π4+(ε1). This expression is valid for s < 1 and s > 1, and (ε1) is the lattice contribution to the dielectric constant.
27.
A.
Pimenov
,
C.
Hartinger
,
A.
Loidl
,
A. A.
Mukhin
,
V. Y.
Ivanov
, and
A. M.
Balbashov
,
Phys. Rev. B
59
,
12419
(
1999
).
28.
B.
Mansart
,
M. J. G.
Cottet
,
T. J.
Penfold
,
S. B.
Dugdale
,
R.
Tediosi
,
M.
Chergui
, and
F.
Carbone
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
5603
(
2012
).
You do not currently have access to this content.