We have used high speed imaging to capture the fast dynamics of two injection methods. The first one and perhaps the oldest known is based on solid needles and used for dermal pigmentation, popularly known as tattooing. The second is a novel needle-free microjet injector based on thermocavitation. Injections in agarose gel skin surrogates were made with both methods and ink formulations having different fluidic properties. Water, a glycerin–water mixture, and commercial inks were used with both injectors to understand better end-point injection. The agarose deformation process due to the solid needle injection helped establish an assessment of penetration potential by using the dimensionless penetration strength quantity. We found that microjet injections are superior than solid injections in terms of energy and volumetric delivery efficiencies per injection for three different liquids. The microjet injector could reduce the environmental impact of used needles and benefit millions of people using needles for medical and cosmetic use.

1.
K.
Sperry
, “
Tattoos and tattooing. Part I: History and methodology
,”
Am. J. Forensic Med. Pathol.
12
(
4
),
313
319
(
1991
).
2.
N.
Kluger
and
V.
Koljonen
, “
Tattoos, inks, and cancer
,”
Lancet Oncol.
13
(
4
),
e161
e168
(
2012
).
3.
P. S.
Islam
,
C.
Chang
,
C.
Selmi
,
E.
Generali
,
A.
Huntley
,
S. S.
Teuber
, and
M. E.
Gershwin
, “
Medical complications of tattoos: A comprehensive review
,”
Clin. Rev. Allergy Immunol.
50
(
2
),
273
286
(
2016
).
4.
R.
Friedman
,
D.
Antoine
,
S.
Talamo
,
P. J.
Reimer
,
J. H.
Taylor
,
B.
Wills
, and
M. A.
Mannino
, “
Natural mummies from predynastic Egypt reveal the world’s earliest figural tattoos
,”
J. Archaeol. Sci.
92
,
116
125
(
2018
).
5.
J.
Serup
,
N.
Kluger
, and
W.
Bäumler
,
Tattooed Skin and Health
, Current Problems in Dermatology (
Karger Medical and Scientific Publishers
,
2015
).
6.
P.
Piccinini
,
S.
Pakalin
,
L.
Contor
,
I.
Bianchi
, and
C.
Senaldi
, “Safety of tattoos and permanent make-up: Final report,” JRC Science for Policy Report EUR, Vol. 27947, 2016.
7.
H.
Petersen
and
K.
Roth
, “
To tattoo or not to tattoo
,”
Chem. Unserer Zeit
50
(
1
),
44
66
(
2016
) (English translation from www.chemistryviews.org).
8.
D.
Jang
,
D.
Kim
, and
J.
Moon
, “
Influence of fluid physical properties on ink-jet printability
,”
Langmuir
25
(
5
),
2629
2635
(
2009
).
9.
C. A.
Grant
,
P. C.
Twigg
,
R.
Baker
, and
D. J.
Tobin
, “
Tattoo ink nanoparticles in skin tissue and fibroblasts
,”
Beilstein J. Nanotechnol.
6
,
1183
(
2015
).
10.
Y.-C.
Kim
, Skin Vaccination Methods: Gene Gun, Jet Injector, Tattoo Vaccine, and Microneedle (Springer, Berlin, 2017), pp. 485–499.
11.
A.
Taberner
,
N. C.
Hogan
, and
I. W.
Hunter
, “
Needle-free jet injection using real-time controlled linear Lorentz-force actuators
,”
Med. Eng. Phys.
34
(
9
),
1228
1235
(
2012
).
12.
X.
Li
,
B.
Ruddy
, and
A.
Taberner
, “
Characterization of needle-assisted jet injections
,”
J. Control Release
243
,
195
203
(
2016
).
13.
A.
Arora
,
M. R.
Prausnitz
, and
S.
Mitragotri
, “
Micro-scale devices for transdermal drug delivery
,”
Int. J. Pharm.
364
(
2
),
227
236
(
2008
).
14.
R.
Vecchione
,
S.
Coppola
,
E.
Esposito
,
C.
Casale
,
V.
Vespini
,
S.
Grilli
,
P.
Ferraro
, and
P. A.
Netti
, “
Electro-drawn drug-loaded biodegradable polymer microneedles as a viable route to hypodermic injection
,”
Adv. Funct. Mater.
24
(
23
),
3515
3523
(
2014
).
15.
S.
Mitragotri
, “
Current status and future prospects of needle-free liquid jet injectors
,”
Nat. Rev. Drug Discov.
5
,
543
548
(
2006
).
16.
A.
Arora
, Liquid and Powder Jet Injectors in Drug Delivery: Mechanisms, Designs, and Applications (Springer, Berlin, 2017), pp. 221–230.
17.
S.
Münch
,
J.
Wohlrab
, and
R.
Neubert
, “
Dermal and transdermal delivery of pharmaceutically relevant macromolecules
,”
Eur. J. Pharm. Biopharm.
119
,
235
242
(
2017
).
18.
J.
Baxter
and
S.
Mitragotri
, “
Jet-induced skin puncture and its impact on needle-free jet injections: Experimental studies and a predictive model
,”
J. Controlled Release
106
(
3
),
361
373
(
2005
).
19.
J.
Schramm
and
S.
Mitragotri
, “
Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration
,”
Pharm. Res.
19
(
11
),
1673
1679
(
2002
).
20.
G.
Nelmes
, “
The peace gun and the eradication of smallpox
,”
Mil. Med.
182
(
3–4
),
1512
1513
(
2017
).
21.
N. C.
Hogan
,
A. J.
Taberner
,
L. A.
Jones
, and
I. W.
Hunter
, “
Needle-free delivery of macromolecules through the skin using controllable jet injectors
,”
Expert Opin. Drug Deliv.
12
(
10
),
1637
1648
(
2015
).
22.
P.
Ferraro
,
S.
Coppola
,
S.
Grilli
,
M.
Paturzo
, and
V.
Vespini
, “
Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting
,”
Nat. Nanotechnol.
5
(
6
),
429
(
2010
).
23.
Y.
Tagawa
,
N.
Oudalov
,
C. W.
Visser
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
, “
Highly focused supersonic microjets
,”
Phys. Rev. X
2
(
3
),
031002
(
2012
).
24.
Y.
Tagawa
,
A. E.
Oudalov
,
N.
Ghalbzouri
,
C.
Sun
, and
D.
Lohse
, “
Needle-free injection into skin and soft matter with highly focused microjets
,”
Lab Chip
13
,
1357
1363
(
2013
).
25.
O.
Gennari
,
L.
Battista
,
B.
Silva
,
S.
Grilli
,
L.
Miccio
,
V.
Vespini
,
S.
Coppola
,
P.
Orlando
,
L.
Aprin
,
P.
Slangen
et al., “
Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts
,”
Appl. Phys. Lett.
106
(
5
),
054103
(
2015
).
26.
S. F.
Rastopov
and
A. T.
Sukhodolsky
, “Sound generation by thermocavitation-induced CW laser in solutions,” in Optical Radiation Interaction with Matter (International Society for Optics and Photonics, 1991), Vol. 1440, pp. 127–135.
27.
J. P.
Padilla-Martinez
,
C.
Berrospe-Rodriguez
,
G.
Aguilar
,
J. C.
Ramirez-San-Juan
, and
R.
Ramos-Garcia
, “
Optic cavitation with CW lasers: A review
,”
Phys. Fluids
26
,
122007
(
2014
).
28.
C.
Berrospe-Rodriguez
,
C. W.
Visser
,
S.
Schlautmann
,
R.
Ramos-Garcia
, and
D.
Fernandez Rivas
, “
Continuous-wave laser generated jets for needle free applications
,”
Biomicrofluidics
10
(
1
),
014104
(
2016
).
29.
C. B.
Rodríguez
,
C. W.
Visser
,
S.
Schlautmann
,
D. F.
Rivas
, and
R.
Ramos-Garcia
, “
Toward jet injection by continuous-wave laser cavitation
,”
J. Biomed. Opt.
22
(
10
),
105003
(
2017
).
30.
J.
Serup
,
N.
Kluger
, and
W.
Bäumler
, Tattooed Skin and Health, Tattoo Machines, Needles and Utilities (Karger Medical and Scientific Publishers, 2015).
31.
H.
Wijshoff
, “
The dynamics of the piezo inkjet printhead operation
,”
Phys. Rep.
491
(
4
),
77
177
(
2010
).
32.
W. J.
Grande
, “Direct capillary printing in medical device manufacture,” in Medical Coatings Deposition Technologies (John Wiley & Sons, 2016), pp. 309–372.
33.
M. A.
Kendall
, “
The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system
,”
Shock Waves
12
(
1
),
23
30
(
2002
).
34.
Y.
Deng
,
G.
Winter
, and
J.
Myschik
, “
Preparation and validation of a skin model for the evaluation of intradermal powder injection devices
,”
Eur. J. Pharm. Biopharm.
81
(
2
),
360
368
(
2012
).
35.
J.
Schramm-Baxter
,
J.
Katrencik
, and
S.
Mitragotri
, “
Jet injection into polyacrylamide gels: Investigation of jet injection mechanics
,”
J. Biomech.
37
(
8
),
1181
1188
(
2004
).
36.
R.
Williams
, “
Jet injection of viscous fluids
,” Ph.D. thesis (
ResearchSpace at University of Auckland
,
2016
).
37.
M.
Ahearne
,
Y.
Yang
,
A. J.
El Haj
,
K. Y.
Then
, and
K.-K.
Liu
, “
Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications
,”
J. R. Soc. Interface
2
(
5
),
455
463
(
2005
).
38.
Y.
Hu
,
X.
Zhao
,
J. J.
Vlassak
, and
Z.
Suo
, “
Using indentation to characterize the poroelasticity of gels
,”
Appl. Phys. Lett.
96
(
12
),
121904
(
2010
).
39.
D. M.
Ebenstein
and
L. A.
Pruitt
, “
Nanoindentation of soft hydrated materials for application to vascular tissues
,”
J. Biomed. Mater. Res. Part A
69A
(
2
),
222
232
(
2004
).
40.
G.
Constantinides
,
Z. I.
Kalcioglu
,
M.
McFarland
,
J. F.
Smith
, and
K. J. V.
Vliet
, “
Probing mechanical properties of fully hydrated gels and biological tissues
,”
J. Biomech.
41
(
15
),
3285
3289
(
2008
).
41.
C.-Y.
Hui
,
Y. Y.
Lin
,
F.-C.
Chuang
,
K. R.
Shull
, and
W.-C.
Lin
, “
A contact mechanics method for characterizing the elastic properties and permeability of gels
,”
J. Polym. Sci. Part B: Polym. Phys.
44
(
2
),
359
370
(
2006
).
42.
M.
Galli
,
K. S.
Comley
,
T. A.
Shean
, and
M. L.
Oyen
, “
Viscoelastic and poroelastic mechanical characterization of hydrated gels
,”
J. Mater. Res.
24
(
3
),
973
(
2009
).
43.
S.
Chen
and
A.
Soh
, “
The capillary force in micro- and nano-indentation with different indenter shapes
,”
Int. J. Solids Struct.
45
(
10
),
3122
3137
(
2008
).
44.
Y.
Men
,
X.
Zhang
, and
W.
Wang
, “
Capillary liquid bridges in atomic force microscopy: Formation, rupture, and hysteresis
,”
J. Chem. Phys.
131
(
18
),
184702
(
2009
).
45.
V.
Normand
,
D. L.
Lootens
,
E.
Amici
,
K. P.
Plucknett
, and
P.
Aymard
, “
New insight into agarose gel mechanical properties
,”
Biomacromolecules
1
(
4
),
730
738
(
2000
).
46.
V.
Nayar
,
J.
Weiland
,
C.
Nelson
, and
A.
Hodge
, “
Elastic and viscoelastic characterization of agar
,”
J. Mech. Behav. Biomed. Mater.
7
,
60
68
(
2012
).
47.
L.
Landau
and
B.
Levich
, “Dragging of a liquid by a moving plate,” in Dynamics of Curved Fronts (Academic Press, San Diego, CA, 1988), pp. 141–153.
48.
E.
Rio
and
F.
Boulogne
, “
Withdrawing a solid from a bath: How much liquid is coated?
,”
Adv. Colloid Interface Sci.
247
,
100
114
(
2017
).
49.
Several tattooing and PMU companies, personal communication (2015–2018).
50.
I.
Weijers
,
Design for a Needle Free Tattoo Machine for Permanent Make Up
(
University of Twente
,
2017
).
51.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
1985
).
You do not currently have access to this content.