Graphene oxide (GO), an ionic and molecular sieve, is an important material for wide-spectrum filtration, since its properties can be tuned by controlling the structure and dimensions of nanochannels between GO nanosheets. In the literature, mechanisms of ion percolation have been proposed assuming GO to be a uniform structure of vertically stacked graphene sheets decorated with functional groups, termed as lamellae. However, in practice, GO is known to have a hierarchical microstructure. In the present work, supported GO films annealed at different temperatures have been studied with the aim of discerning the relative contributions of nanochannels and voids, gaps between the lamellae, using electro-impedance spectroscopy, and the results were fitted to equivalent circuits. Monotonous decrease in the charge transfer resistance Rct and an increase in the percolation resistance RP were observed for GO films annealed up to 160 °C. Increase in RP, taken in perspective with a gradual loss of ordering in nanosheets as observed from X-ray diffraction spectra, enables the conclusion that nanochannels are the dominant pathways of percolation. This was further confirmed by the response of GO films annealed at 180 °C and 200 °C, where a strong dynamic is observed. For these annealed GO films, charge transfer happens both in the conducting films and at the fluorine-doped tin oxide interface. The two processes of ion percolation and charge transfer are, however, interdependent, and are not separated in the impedance response.

1.
J. L.
Gonzales
,
A. M.
Rodrigez
, and
F. D.
Vega
,
Carbon
7
,
719
(
1969
).
2.
A.
Hamwi
and
V.
Marchand
,
J. Phys. Chem. Solids
57
,
867
(
1996
).
3.
S.
Cerveny
,
F.
Barroso-Bujans
,
Á.
Alegría
, and
J.
Colmenero
,
J. Phys. Chem. C
114
,
2604
(
2010
).
4.
A.
Buchsteiner
,
A.
Lerf
, and
J.
Pieper
,
J. Phys. Chem. B
110
,
22328
(
2006
).
5.
A.
Lerf
,
A.
Buchsteiner
,
J.
Pieper
,
S.
Schöttl
,
I.
Dekany
,
T.
Szabo
, and
H. P.
Boehm
,
J. Phys. Chem. Solids
67
,
1106
(
2006
).
6.
B.
Rezania
,
N.
Severin
,
A. V.
Talyzin
, and
J. P.
Rabe
,
Nano Lett.
14
,
3993
(
2014
).
7.
M.
Ghosh
,
L.
Pradipkanti
,
V.
Rai
,
D. K.
Satapathy
,
P.
Vayalamkuzhi
, and
M.
Jaiswal
,
Appl. Phys. Lett.
106
,
241902
(
2015
).
8.
W.
Guo
,
J.
Chen
,
S.
Sun
, and
Q.
Zhou
,
J. Phys. Chem. C
120
,
7451
(
2016
).
9.
R.
Wang
,
H.
Gao
,
D.
Zhu
,
T.
Yang
,
X.
Zhang
,
L.
Li
,
G.
Yin
,
L.
Zhu
,
Z.
Feng
, and
X.
Li
,
Carbon
114
,
23
(
2017
).
10.
S.
Papamatthaiou
,
D.-P.
Argyropoulos
,
A.
Masurkar
,
M. R.
Cavallari
,
F.
Farmakis
,
I.
Kymissis
, and
N.
Georgoulas
,
Appl. Phys. Lett.
110
,
252106
(
2017
).
11.
R. R.
Nair
,
H. A.
Wu
,
P. N.
Jayaram
,
I. V.
Grigorieva
, and
A. K.
Geim
,
Science
335
,
442
(
2012
).
12.
R. K.
Joshi
,
P.
Carbone
,
F. C.
Wang
,
V. G.
Kravets
,
Y.
Su
,
I. V.
Grigorieva
,
H. A.
Wu
,
A. K.
Geim
, and
R. R.
Nair
,
Science
343
,
752
(
2014
).
13.
V.
Saraswat
,
R. M.
Jacobberger
,
J. S.
Ostrander
,
C. L.
Hummell
,
A. J.
Way
,
J.
Wang
,
M. T.
Zanni
, and
M. S.
Arnold
,
ACS Nano
12
,
7855
(
2018
).
14.
A.
Lerf
,
H.
He
,
M.
Forster
, and
J.
Klinowski
,
J. Phys. Chem. B
102
,
4477
(
1998
).
15.
K.
Erickson
,
R.
Erni
,
Z.
Lee
,
N.
Alem
,
W.
Gannett
, and
A.
Zettl
,
Adv. Mater.
22
,
4467
(
2010
).
16.
C.
Gómez-Navarro
,
J. C.
Meyer
,
R. S.
Sundaram
,
A.
Chuvilin
,
S.
Kurasch
,
M.
Burghard
,
K.
Kern
, and
U.
Kaiser
,
Nano Lett.
10
,
1144
(
2010
).
17.
K.
Nandy
,
M. J.
Palmeri
,
C. M.
Burke
,
Z.
An
,
S. T.
Nguyen
,
K. W.
Putz
, and
L. C.
Brinson
,
Adv. Mater. Interfaces
3
,
1
(
2016
).
18.
C. D.
Wood
,
M. J.
Palmeri
,
K. W.
Putz
,
Z.
An
,
S. T.
Nguyen
, and
L.
Catherine Brinson
,
J. Appl. Mech.
80
,
040913
(
2013
).
19.
J. Y.
Chong
,
B.
Wang
,
C.
Mattevi
, and
K.
Li
,
J. Memb. Sci.
549
,
385
(
2018
).
20.
A. V.
Naumov
,
Graphene Oxide: Fundamentals and Applications
(
Wiley
,
Chichester
,
UK
,
2017
).
21.
J.
Abraham
,
K. S.
Vasu
,
C. D.
Williams
,
K.
Gopinadhan
,
Y.
Su
,
C. T.
Cherian
,
J.
Dix
,
E.
Prestat
,
S. J.
Haigh
,
I. V.
Grigorieva
,
P.
Carbone
,
A. K.
Geim
, and
R. R.
Nair
,
Nat. Nano
12
,
546
(
2017
).
22.
S.
Sahu
,
M.
Di Ventra
, and
M.
Zwolak
,
Nano Lett.
17
,
4719
(
2017
).
23.
C.
Steinem
,
A.
Janshoff
,
H.-J.
Galla
, and
M.
Sieber
,
Bioelectrochem. Bioenerg.
42
,
213
(
1997
).
24.
I. K.
Vockenroth
,
D.
Fine
,
A.
Dodobalapur
,
A. T. A.
Jenkins
, and
I.
Köper
,
Electrochem. Commun.
10
,
323
(
2008
).
25.
G.
Valincius
,
M.
Mickevicius
,
T.
Penkauskas
, and
M.
Jankunec
,
Electrochim. Acta
222
,
904
(
2016
).
26.
M.
Acik
,
C.
Mattevi
,
C.
Gong
,
G.
Lee
,
K.
Cho
,
M.
Chhowalla
, and
Y. J.
Chabal
,
ACS Nano
4
,
5861
(
2010
).
27.
M.
Acik
,
G.
Lee
,
C.
Mattevi
,
A.
Pirkle
,
R. M.
Wallace
,
M.
Chhowalla
,
K.
Cho
, and
Y.
Chabal
,
J. Phys. Chem. C
115
,
19761
(
2011
).
28.
K. S.
Andrikopoulos
,
G.
Bounos
,
D.
Tasis
,
L.
Sygellou
,
V.
Drakopoulos
, and
G. A.
Voyiatzis
,
Adv. Mater. Interfaces
1
,
1400250
(
2014
).
29.
T. M.
Pranav
,
T.
Sakorikar
,
P.
Vayalamkuzhi
, and
M.
Jaiswal
,
J. Appl. Phys.
125
,
24303
(
2019
).
30.
P.
Scherrer
, “
Nachrichten von Der Gesellschaft Der Wissenschaften Zu Gottingen
,”
Math. Phys. Klasse
2
,
98
(
1918
) (in German).
31.
V.
Rai
,
M.K.
Kavitha
, and
M.
Jaiswal
, in
Proceedings of 2015 IEEE International Symposium on Nanoelectronic and Information Systems INIS 2015
(IEEE,
2016
), p.
164
.
32.
T.
Szabó
,
O.
Berkesi
, and
I.
Dékány
,
Carbon
43
,
3186
(
2005
).
33.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods Fundamentals and Applications
, 2nd ed. (
Wiley
,
New York
,
2000
).
34.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rep.
473
,
51
(
2009
).
35.
F.
Tuinstra
and
J. L.
Koenig
,
J. Chem. Phys.
53
,
1126
(
1970
).
36.
L. G.
Cançado
,
A.
Jorio
,
E. H. M.
Ferreira
,
F.
Stavale
,
C. A.
Achete
,
R. B.
Capaz
,
M. V. O.
Moutinho
,
A.
Lombardo
,
T. S.
Kulmala
, and
A. C.
Ferrari
,
Nano Lett.
11
,
3190
(
2011
).
37.
C. H.
Hsu
and
F.
Mansfield
,
Corrosion
57
,
747
(
2001
).

Supplementary Material

You do not currently have access to this content.