The Kondo effect is a many-body phenomenon, allowing insight into the electronic and atomistic structure of magnetic adsorbates on metal surfaces. Its chemical control is intriguing because it deepens such insight, but the underlying mechanisms are only partly understood. We study the effect of increasing the number of CO ligands attached to a cobalt adatom on copper(001), which correlates with an increase in the Kondo temperature TK experimentally [Wahl et al., Phys. Rev. Lett. 95, 166601 (2005)], by solving an Anderson impurity model parametrized by the density functional theory. Our results suggest that the orbital responsible for the Kondo effect is dx2y2 for the tetracarbonyl and its combination with dz2 for the dicarbonyl. The molecular structures depend considerably on the approximate exchange–correlation functional, which may be related to the known difficulty of describing CO binding to metal surfaces. These structural variations strongly affect the Kondo properties, which is not only a concern for predictive studies but also of interest for detecting mechanical deformations and for understanding the effect of tip–adsorbate interactions in the scanning tunneling microscope. Still, by constraining the tetracarbonyl to C4v symmetry, as suggested by experimental data, we find structures compatible with the experimental trend for TK (employing BLYP-D3+U). This is not possible for the tricarbonyl despite the range of computational parameters scanned. For the tetra- and dicarbonyl, the increased TK correlates with a larger hybridization function at the Fermi level, which we trace back to an increased interaction of the Co 3d orbitals with the ligands.

1.
J.
Kondo
,
Prog. Theor. Phys.
32
,
37
(
1964
).
2.
L.
Kouvenhoven
and
L.
Glazman
,
Phys. World
14
,
33
(
2001
).
3.
M.
Ternes
,
A. J.
Heinrich
, and
W.-D.
Schneider
,
J. Phys. Condens. Matter
21
,
053001
(
2009
).
4.
M.
Schüler
,
S.
Barthel
,
T.
Wehling
,
M.
Karolak
,
A.
Valli
, and
G.
Sangiovanni
,
Eur. Phys. J. Spec. Top.
226
,
2615
(
2017
).
5.
Q.
Zhang
,
G.
Kuang
,
R.
Pang
,
X.
Shi
, and
N.
Li
,
ACS Nano
9
,
12521
(
2015
).
6.
T.
Knaak
,
M.
Gruber
,
S.
Puhl
,
F.
Benner
,
A.
Escribano
,
J.
Heck
, and
R.
Berndt
,
J. Phys. Chem. C
121
,
26777
(
2017
).
7.
M.
Schwarz
,
M.
Garnica
,
D. A.
Duncan
,
A. P. P. A. J.
Ducke
,
P. S.
Deimel
,
P. K.
Thakur
,
T.-L.
Lee
,
A.
Rubio
,
J. V.
Barth
,
F.
Allegretti
, and
W.
Auwarter
,
J. Phys. Chem. C
122
,
5452
(
2018
).
8.
G. E.
Pacchioni
,
M.
Pivetta
,
L.
Gragnaniello
,
F.
Donati
,
G.
Autes
,
O. V.
Yazyev
,
S.
Rusponi
, and
H.
Brune
,
ACS Nano
11
,
2675
(
2017
).
9.
M.
Bazarnik
,
J.
Brede
,
R.
Decker
, and
R.
Wiesendanger
,
ACS Nano
7
,
11341
(
2013
).
10.
P.
Stoll
,
C.
Lotze
,
J. N.
Ladenthin
,
T. R.
Umbach
,
I.
Fernandez-Torrente
, and
K. J.
Franke
,
J. Phys. Condens. Matter
30
,
454002
(
2018
).
11.
P.
Jacobson
,
T.
Herden
,
M.
Muenks
,
G.
Laskin
,
O.
Brovko
,
V.
Stepanyuk
,
M.
Ternes
, and
K.
Kern
,
Nat. Commun.
6
,
8536
(
2015
).
12.
R.
Hiraoka
,
E.
Minamitani
,
R.
Arafune
,
N.
Tsukahara
,
S.
Watanabe
,
M.
Kawai
, and
N.
Takagi
,
Nat. Commun.
8
,
16012
(
2017
).
13.
D.-J.
Choi
,
R.
Robles
,
S.
Yan
,
J. A. J.
Burgess
,
S.
Rolf-Pissarczyk
,
J.-P.
Gauyacq
,
N.
Lorente
,
M.
Ternes
, and
S.
Loth
,
Nano Lett.
17
,
6203
(
2017
).
14.
J.
Kügel
,
M.
Karolak
,
A.
Krönlein
,
D.
Serrate
,
M.
Bode
, and
G.
Sangiovanni
,
npj Quant. Mater.
3
,
53
(
2018
).
15.
P.
Nozières
,
J. Low Temp. Phys.
17
,
31
(
1974
).
16.
Y.
Jiang
,
Y. N.
Zhang
,
J. X.
Cao
,
R. Q.
Wu
, and
W.
Ho
,
Science
333
,
324
(
2011
).
17.
A. A.
Khajetoorians
,
J.
Wiebe
,
B.
Chilian
, and
R.
Wiesendanger
,
Science
332
,
1062
(
2011
).
18.
S.
Karan
,
C.
Garcia
,
M.
Karolak
,
D.
Jacob
,
N.
Lorente
, and
R.
Berndt
,
Nano Lett.
18
,
88
93
(
2018
).
19.
A.
Zhao
,
Q.
Li
,
L.
Chen
,
H.
Xiang
,
W.
Wang
,
S.
Pan
,
B.
Wang
,
X.
Xiao
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
Science
309
,
1542
(
2005
).
20.
B. W.
Heinrich
,
C.
Ehlert
,
N.
Hatter
,
L.
Braun
,
C.
Lotze
,
P.
Saalfrank
, and
K. J.
Franke
,
ACS Nano
12
,
3172
(
2018
).
21.
N.
Tsukahara
,
E.
Minamitani
,
Y.
Kim
,
M.
Kawai
, and
N.
Takagi
,
J. Chem. Phys.
141
,
054702
(
2014
).
22.
P.
Wahl
,
L.
Diekhöner
,
G.
Wittich
,
L.
Vitali
,
M. A.
Schneider
, and
K.
Kern
,
Phys. Rev. Lett.
95
,
166601
(
2005
).
23.
A. I.
Lichtenstein
and
M. I.
Katsnelson
,
Phys. Rev. B
12
,
6884
(
1998
).
24.
P. J.
Feibelman
,
B.
Hammer
,
J. K.
Nørskov
,
F.
Wagner
,
M.
Scheffler
,
R.
Stumpf
,
R.
Watwe
, and
J.
Dumesic
,
J. Phys. Chem. B
105
,
4018
(
2001
).
25.
G.
Kresse
,
A.
Gil
, and
P.
Sautet
,
Phys. Rev. B
68
,
073401
(
2003
).
26.
S. E.
Mason
,
I.
Grinberg
, and
A. M.
Rappe
,
Phys. Rev. B
69
,
161401
(
2004
).
27.
S.
Sharifzadeh
,
P.
Huang
, and
E.
Carter
,
J. Phys. Chem. C
112
,
4649
(
2008
).
28.
M.
Alaei
,
H.
Akbarzadeh
,
H.
Gholizadeh
, and
S.
de Gironcoli
,
Phys. Rev. B
77
,
085414
(
2008
).
29.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
30.
F.
Favot
,
A.
Dal Corso
, and
A.
Baldereschi
,
J. Chem. Phys.
114
,
483
(
2001
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
33.
P.
Lazić
,
M.
Alaei
,
N.
Atodiresei
,
V.
Caciuc
,
R.
Brako
, and
S.
Blügel
,
Phys. Rev. B
81
,
045401
(
2010
).
34.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
35.
O. A.
Vydrov
and
T. V.
Voorhis
,
Phys. Rev. Lett.
103
,
063004
(
2009
).
36.
M.
Obata
,
M.
Nakamura
,
I.
Hamada
, and
T.
Oda
,
J. Phys. Soc. Jpn.
82
,
093701
(
2013
).
37.
M. P.
Bahlke
,
M.
Karolak
, and
C.
Herrmann
,
Phys. Rev. B
97
,
035119
(
2018
).
38.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
39.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
40.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
41.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
42.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
43.
R. W. G.
Wyckoff
,
Crystal Structures
(
Interscience Publishers
,
New York
,
1963
).
44.
J. C.
Slater
,
Quantum Theory of Atomic Structure
(
McGraw-Hill
,
New York
,
1960
).
45.
GννKS is the Greens function in the Bloch basis, and since it is obtained from DFT, it can also be regarded as “noninteracting”. For the noninteracting Green’s function in the local basis of the impurity, we use a small letter g.
46.
P.
Werner
,
A.
Comanac
,
L.
de Medici
,
M.
Troyer
, and
A. J.
Millis
,
Phys. Rev. Lett.
97
,
076405
(
2006
).
47.
E.
Gull
,
A. J.
Millis
,
A. I.
Lichtenstein
,
A. N.
Rubtsov
,
M.
Troyer
, and
P.
Werner
,
Rev. Mod. Phys.
83
,
349
(
2011
).
48.
L.
Huang
,
Y.
Wang
,
Z. Y.
Meng
,
L.
Du
,
P.
Werner
, and
X.
Dai
,
Comput. Phys. Commun.
195
,
140
(
2015
).
49.
P.
Coleman
,
Introduction to Many Body Physics
(
Cambridge University Press
,
2015
).
50.
A. C.
Hewson
,
The Kondo Problem to Heavy Fermions
(
Cambridge University Press
,
Cambridge
,
1997
).
51.
G.
Kotliar
,
S. Y.
Savrasov
,
K.
Haule
,
V. S.
Oudovenko
,
O.
Parcollet
, and
C. A.
Marianetti
,
Rev. Mod. Phys.
78
,
865
(
2006
).
52.
M.
Jarrell
and
J. E.
Gubernatis
,
Phys. Rep.
269
,
133
(
1996
).
53.
iωn are the so-called Matsubara frequencies, and δ is an infinitesimal small offset.
54.
R. K.
Bryan
,
Eur. Biophys. J.
18
,
165
(
1990
).
55.
J. C.
Slater
,
Phys. Rev.
34
,
1293
(
1929
).
56.
M. T.
Czyżyk
and
G. A.
Sawatzky
,
Phys. Rev. B
49
,
14211
(
1994
).
57.
J. W.
Negele
and
H.
Orland
,
Quantum Many-Particle Systems
(
Westview Press
,
Boulder, CO
,
1998
).
58.
H. J.
Kulik
,
J. Chem. Phys.
142
,
240901
(
2015
).
59.
It is actually not a perfect C3v symmetry, because the two CO ligands in a bridged position (with respect to the Cu(001) surface) have slightly different structural parameters, compared to the one in top position.
60.
P.
Huang
and
E. A.
Carter
,
Nano Lett.
8
,
1265
(
2008
).
61.
A. V.
Chubukov
and
D. L.
Maslov
,
Phys. Rev. B
86
,
155136
(
2012
).
62.
It has been argued that a second orbital may be contributing to the Kondo properties of Co/Cu(001) at temperatures too low to be reached with the methodology employed here (Refs. 73 and 74).
63.
M.
Karolak
,
D.
Jacob
, and
A.
Lichtenstein
,
Phys. Rev. Lett.
107
,
146604
(
2011
).
64.
T. O.
Wehling
,
A. V.
Balatsky
,
M. I.
Katsnelson
,
A. I.
Lichtenstein
, and
A.
Rosch
,
Phys. Rev. B
81
,
115427
(
2008
).
65.
B. W.
Heinrich
,
L.
Braun
,
J. I.
Pascual
, and
K. J.
Franke
,
Nat. Phys.
9
,
765
768
(
2013
).
66.
J. J.
Parks
,
A. R.
Champagne
,
T. A.
Costi
,
W. W.
Shum
,
A. N.
Pasupathy
,
E.
Neuscamman
,
S.
Flores-Torres
,
P. S.
Cornaglia
,
A. A.
Aligia
,
C. A.
Balseiro
,
G. K.-L.
Chan
,
H. D.
Abruña
, and
D. C.
Ralph
,
Science
328
,
1370
(
2010
).
67.
H.-L.
Lu
,
Y.
Cao
,
J.
Qi
,
A.
Bakker
,
C. A.
Strassert
,
X.
Lin
,
K.-H.
Ernst
,
S.
Du
,
H.
Fuchs
, and
H.-J.
Gao
,
Nano Lett.
18
,
4704
4709
(
2018
).
68.
A.
Droghetti
and
I.
Rungger
,
Phys. Rev. B
95
,
8
(
2017
).
69.
M.
Schöler
,
O. E.
Peil
,
G. J.
Kraberger
,
R.
Pordzik
,
M.
Marsman
,
G.
Kresse
,
T. O.
Wehling
, and
M.
Aichhorn
,
J. Phys. Condens. Matter
30
,
475901
(
2018
).
70.
S.
Luber
,
S.
Leung
,
C.
Herrmann
,
W. H.
Du
,
L.
Noodleman
, and
V. S.
Batista
,
Dalton Trans.
43
,
576
(
2014
).
71.
For the dz2 orbital this effect is only small, as can be seen by the low intensity of the peak of Δ(ω) in case of the isolated molecule, in contrast to the dxy and dxz/yz orbitals.
72.
P.
Wahl
,
A. P.
Seitsonen
,
L.
Diekhöner
,
M. A.
Schneider
, and
K.
Kern
,
New J. Phys.
11
,
113015
(
2009
).
73.
D.
Jacob
,
J. Phys. Condens. Matter
27
,
245606
(
2015
).
74.
P. P.
Baruselli
,
R.
Requist
,
A.
Smogunov
,
M.
Fabrizio
, and
E.
Tosatti
,
Phys. Rev. B
92
,
045119
(
2015
).

Supplementary Material

You do not currently have access to this content.