This paper presents an analytic model to calculate nodal charges and their corresponding internodal capacitances in ultra-scaled III-nitride high electron mobility transistors (HEMTs) in which carrier transport is expected to be quasiballistic. The dynamic model is combined with our previously published static model [K. Li and S. Rakheja, J. Appl. Phys. 123, 184501 (2018)] to provide a unified physical description of the HEMT. In the dynamic model, the position-dependent channel charge is obtained using a realistic potential profile in the channel, obtained from the solution of the Poisson equation. The effect of electric field lines penetrating from the ungated access regions into the channel (gated region) is included. Fringing electric field lines from the gate to the channel, which are especially critical in the off-region of the device, are included in the charge description. The channel charges are obtained self-consistently with the transport model and introduce 16 additional input parameters, which are necessary to explain the bias dependence of internodal capacitances in the off-state and in the off-to-on transition region of the device. Using the model, we elucidate the difference in the capacitance-voltage behavior of drift-diffusive and quasiballistic devices. The sensitivity of channel charges to the specific formulation of the potential profile is also examined. The unified model is applied to the experimental capacitance-voltage data of 42-nm and 105-nm gate-length InAlN/GaN HEMTs with an InGaN backbarrier. Additionally, the model is validated against hydrodynamic simulations of a 50-nm gate-length AlGaN/GaN HEMT with significant Joule heating. The model yields an excellent agreement with the measured and simulated data sets over a broad range of bias and temperature conditions. The model is also used to elucidate the role of contact resistance, Joule heating, and nodal capacitances on the RF performance, i.e., cut-off frequency, third-order intermodulation current, and the input third-order intercept point, of scaled III-nitride HEMTs.

1.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y.-F.
Wu
, “
GaN-based RF power devices and amplifiers
,”
Proc. IEEE
96
,
287
305
(
2008
).
2.
P.
Gangwani
,
S.
Pandey
,
S.
Haldar
,
M.
Gupta
, and
R.
Gupta
, “
Polarization dependent analysis of AlGaN/GaN HEMT for high power applications
,”
Solid State Electron.
51
,
130
135
(
2007
).
3.
M.
Gonschorek
,
J.-F.
Carlin
,
E.
Feltin
,
M.
Py
, and
N.
Grandjean
, “
High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures
,”
Appl. Phys. Lett.
89
,
062106
(
2006
).
4.
N.-Q.
Zhang
,
S.
Keller
,
G.
Parish
,
S.
Heikman
,
S.
DenBaars
, and
U.
Mishra
, “
High breakdown GaN HEMT with overlapping gate structure
,”
IEEE Electron Device Lett.
21
,
421
423
(
2000
).
5.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
, “
AlGaN/GaN HEMTs—An overview of device operation and applications
,”
Proc. IEEE
90
,
1022
1031
(
2002
).
6.
S.
Oh
and
H.-S. P.
Wong
, “
A physics-based compact model of III–V FETs for digital logic applications: Current–voltage and capacitance–voltage characteristics
,”
IEEE Trans. Electron Devices
56
,
2917
2924
(
2009
).
7.
X.
Cheng
,
M.
Li
, and
Y.
Wang
, “
An analytical model for current–voltage characteristics of AlGaN/GaN HEMTs in presence of self-heating effect
,”
Solid State Electron.
54
,
42
47
(
2010
).
8.
X.
Cheng
and
Y.
Wang
, “
A surface-potential-based compact model for AlGaN/GaN MODFETs
,”
IEEE Trans. Electron Devices
58
,
448
454
(
2011
).
9.
J.-W.
Lee
and
K. J.
Webb
, “
A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC
,”
IEEE Trans. Microw. Theory. Tech.
52
,
2
9
(
2004
).
10.
S.
Bajaj
,
O. F.
Shoron
,
P. S.
Park
,
S.
Krishnamoorthy
,
F.
Akyol
,
T.-H.
Hung
,
S.
Reza
,
E. M.
Chumbes
,
J.
Khurgin
, and
S.
Rajan
, “
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
,”
Appl. Phys. Lett.
107
,
153504
(
2015
).
11.
N.
Karumuri
,
G.
Dutta
,
N.
DasGupta
, and
A.
DasGupta
, “
A compact model of drain current for GaN HEMTs based on 2-DEG charge linearization
,”
IEEE Trans. Electron Devices
63
,
4226
4232
(
2016
).
12.
I.
Angelov
,
H.
Zirath
, and
N.
Rosman
, “
A new empirical nonlinear model for HEMT and MESFET devices
,”
IEEE Trans. Microw. Theory Tech.
40
,
2258
2266
(
1992
).
13.
S.
Khandelwal
, and
T. A.
Fjeldly
, “A physics based compact model for drain current in AlGaN/GaN HEMT devices,” in 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (IEEE, 2012), pp. 241–244.
14.
U.
Radhakrishna
, “Modeling gallium-nitride based high electron mobility transistors: Linking device physics to high voltage and high frequency circuit design,” Ph.D. thesis (Massachusetts Institute of Technology, 2016).
15.
K.
Li
and
S.
Rakheja
, “
An analytic current-voltage model for quasi-ballistic III-nitride high electron mobility transistors
,”
J. Appl. Phys.
123
,
184501
(
2018
).
16.
A.
Mouis
, and
S.
Barraud
, “Velocity distribution of electrons along the channel of nanoscale MOS transistors,” in ESSDERC’03 33rd Conference on European Solid-State Device Research, 2003 (IEEE, 2003), pp. 147–150.
17.
E.
Fuchs
,
P.
Dollfus
,
G.
Le Carval
,
S.
Barraud
,
D.
Villanueva
,
F.
Salvetti
,
H.
Jaouen
, and
T.
Skotnicki
, “
A new backscattering model giving a description of the quasi-ballistic transport in nano-MOSFET
,”
IEEE Trans. Electron Devices
52
,
2280
2289
(
2005
).
18.
L.
Wei
,
O.
Mysore
, and
D.
Antoniadis
, “
Virtual-source-based self-consistent current and charge FET models: From ballistic to drift-diffusion velocity-saturation operation
,”
IEEE Trans. Electron Devices
59
,
1263
1271
(
2012
).
19.
GCA assumes that the vertical electric field is much greater than the lateral electric field throughout the channel length
.
20.
R.
Landauer
, “
Conductance from transmission: Common sense points
,”
Phys. Scr.
1992
,
110
(
1992
).
21.
Y.
Imry
, and
R.
Landauer
, “
Conductance viewed as transmission
,”
Rev. Mod. Phys.
71
,
S306
(
1999
).
22.
M.
Anantram
,
M. S.
Lundstrom
and
D. E.
Nikonov
, “
Modeling of nanoscale devices
,”
Proc. IEEE
96
,
1511
1550
(
2008
).
23.
S.
Datta
,
F.
Assad
, and
M. S.
Lundstrom
, “
The silicon MOSFET from a transmission viewpoint
,”
Superlattices Microstruct.
23
,
771
780
(
1998
).
24.
F.
Assad
,
Z.
Ren
,
D.
Vasileska
,
S.
Datta
, and
M.
Lundstrom
, “
On the performance limits for Si MOSFETs: A theoretical study
,”
IEEE Trans. Electron Devices
47
,
232
240
(
2000
).
25.
M.
Lundstrom
and
Z.
Ren
, “
Essential physics of carrier transport in nanoscale MOSFET
,”
IEEE Trans. Electron Devices
49
,
133
141
(
2002
).
26.
R.
Kim
and
M. S.
Lundstrom
, “
Physics of carrier backscattering in one-and two-dimensional nanotransistors
,”
IEEE Trans. Electron Devices
56
,
132
139
(
2009
).
27.
C.
Jeong
,
D. A.
Antoniadis
, and
M. S.
Lundstrom
, “
On backscattering and mobility in nanoscale silicon MOSFETs
,”
IEEE Trans. Electron Devices
56
,
2762
2769
(
2009
).
28.
S.
Khandelwal
,
N.
Goyal
, and
T. A.
Fjeldly
, “
A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices
,”
IEEE Trans. Electron Devices
58
,
3622
3625
(
2011
).
29.
X.
Dang
,
P.
Asbeck
,
E.
Yu
,
G.
Sullivan
,
M.
Chen
,
B.
McDermott
,
K.
Boutros
, and
J.
Redwing
, “
Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor
,”
Appl. Phys. Lett.
74
,
3890
3892
(
1999
).
30.
R.
Oberhuber
,
G.
Zandler
, and
P.
Vogl
, “
Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors
,”
Appl. Phys. Lett.
73
,
818
820
(
1998
).
31.
W.
Tan
,
M.
Uren
,
P.
Fry
,
P.
Houston
,
R.
Balmer
, and
T.
Martin
, “
High temperature performance of AlGaN/GaN HEMTs on Si substrates
,”
Solid State Electron.
50
,
511
513
(
2006
).
32.
M. S.
Lundstrom
and
D. A.
Antoniadis
, “
Compact models and the physics of nanoscale FETs
,”
IEEE Trans. Electron Devices
61
,
225
233
(
2014
).
33.
D.
Guerra
,
M.
Saraniti
,
D. K.
Ferry
,
S. M.
Goodnick
, and
F. A.
Marino
, “
Carrier dynamics investigation on passivation dielectric constant and rf performance of millimeter-wave power GaN HEMTs
,”
IEEE Trans. Electron Devices
58
,
3876
3884
(
2011
).
34.
A. D.
Latorre-Rey
,
J. D.
Albrecht
, and
M.
Saraniti
, “
A π-shaped gate design for reducing hot-electron generation in GaN HEMTs
,”
IEEE Trans. Electron Devices
65
,
1
8
(
2018
).
35.
K.
Li
and
S.
Rakheja
, “
Analytic modeling of nonlinear current conduction in access regions of III-nitride HEMTs
,”
MRS Adv.
3
,
131
136
(
2018
).
36.
J. C.
Freeman
, “Channel temperature model for microwave AlGaN/GaN power HEMTs on SiC and sapphire,” in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), Vol. 3, pp. 2031–2034.
37.
H.
Hjelmgren
,
M.
Thorsell
,
K.
Andersson
, and
N.
Rorsman
, “
Extraction of an electrothermal mobility model for AlGaN/GaN heterostructures
,”
IEEE Trans. Electron Devices
59
,
3344
3349
(
2012
).
38.
S.-Y.
Oh
,
D. E.
Ward
, and
R. W.
Dutton
, “
Transient analysis of MOS transistors
,”
IEEE Trans. Electron Devices
27
,
1571
1578
(
1980
).
39.
A. S.
Roy
,
C. C.
Enz
, and
J.-M.
Sallese
, “
Source–drain partitioning in MOSFET
,”
IEEE Trans. Electron Devices
54
,
1384
1393
(
2007
).
40.
M. S.
Shur
, “
Low ballistic mobility in submicron HEMTs
,”
IEEE Electron Device Lett.
23
,
511
513
(
2002
).
41.
Y.
Tosaka
,
K.
Suzuki
, and
T.
Sugii
, “
Scaling-parameter-dependent model for subthreshold swing S in double-gate SOI MOSFET’s
,”
IEEE Electron Device Lett.
15
,
466
468
(
1994
).
42.
R.-H.
Yan
,
A.
Ourmazd
, and
K. F.
Lee
, “
Scaling the Si MOSFET: From bulk to SOI to bulk
,”
IEEE Trans. Electron Devices
39
,
1704
1710
(
1992
).
43.
D. J.
Frank
,
Y.
Taur
, and
H.-S.
Wong
, “
Generalized scale length for two-dimensional effects in MOSFETs
,”
IEEE Electron Device Lett.
19
,
385
387
(
1998
).
44.
K. K.
Young
, “
Analysis of conduction in fully depleted SOI MOSFETs
,”
IEEE Trans. Electron Devices
36
,
504
506
(
1989
).
45.
K.
Suzuki
,
T.
Tanaka
,
Y.
Tosaka
,
H.
Horie
, and
Y.
Arimoto
, “
Scaling theory for double-gate SOI MOSFET’s
,”
IEEE Trans. Electron Devices
40
,
2326
2329
(
1993
).
46.
Y.
Liu
,
M.
Luisier
,
A.
Majumdar
,
D. A.
Antoniadis
, and
M. S.
Lundstrom
, “
On the interpretation of ballistic injection velocity in deeply scaled MOSFETs
,”
IEEE Trans. Electron Devices
59
,
994
1001
(
2012
).
47.
L.
Liu
,
D.
Mohata
, and
S.
Datta
, “
Scaling length theory of double-gate interband tunnel field-effect transistors
,”
IEEE Trans. Electron Devices
59
,
902
908
(
2012
).
48.
J. W.
Chung
, “Advanced technologies for improving high frequency performance of AlGaN/GaN high electron mobility transistors,” Ph.D. thesis (Massachusetts Institute of Technology, 2008).
49.
U.
Radhakrishna
and
D.
Antoniadis
,
MIT Virtual Source GaNFET-RF (MVSG-RF) Model
(nanoHUB,
2014
).
50.
A.
Majumdar
,
K.
Fushinobu
, and
K.
Hijikata
, “
Effect of gate voltage on hot-electron and hot phonon interaction and transport in a submicrometer transistor
,”
J. Appl. Phys.
77
,
6686
6694
(
1995
).
51.
X.-D.
Wang
,
W.-D.
Hu
,
X.-S.
Chen
, and
W.
Lu
, “
The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs
,”
IEEE Trans. Electron Devices
59
,
1393
1401
(
2012
).
52.
J.
Wu
,
W.
Walukiewicz
,
W.
Shan
,
K.
Yu
,
J.
Ager III
,
S.
Li
,
E.
Haller
,
H.
Lu
, and
W. J.
Schaff
, “
Temperature dependence of the fundamental band gap of InN
,”
J. Appl. Phys.
94
,
4457
4460
(
2003
).
53.
I.
Vurgaftman
,
J.
Meyer
, and
L.
Ram-Mohan
, “
Band parameters for III–V compound semiconductors and their alloys
,”
J. Appl. Phys.
89
,
5815
5875
(
2001
).
54.
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
,
Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe
(
John Wiley & Sons
,
2001
).
55.
C.
Lombardi
,
S.
Manzini
,
A.
Saporito
, and
M.
Vanzi
, “
A physically based mobility model for numerical simulation of nonplanar devices
,”
IEEE Trans. Comput. Aided Design Integr. Circuits Syst.
7
,
1164
1171
(
1988
).
56.
J. M.
Tirado
,
J. L.
Sanchez-Rojas
, and
J. I.
Izpura
, “
Trapping effects in the transient response of AlGaN/GaN HEMT devices
,”
IEEE Trans. Electron Devices
54
,
410
417
(
2007
).
57.
U.
Radhakrishna
,
L.
Wei
,
D.-S.
Lee
,
T.
Palacios
, and
D.
Antoniadis
, “Physics-based GaN HEMT transport and charge model: Experimental verification and performance projection,” in 2012 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2012), pp. 13–16.
58.
D. S.
Lee
,
Z.
Liu
, and
T.
Palacios
, “
GaN high electron mobility transistors for sub-millimeter wave applications
,”
Jpn. J. Appl. Phys.
53
,
100212
(
2014
).
59.
P. H.
Woerlee
,
M. J.
Knitel
,
R.
Van Langevelde
,
D. B.
Klaassen
,
L. F.
Tiemeijer
,
A. J.
Scholten
, and
A. T.
Zegers-van Duijnhoven
, “
RF-CMOS performance trends
,”
IEEE Trans. Electron Devices
48
,
1776
1782
(
2001
).
60.
S. M.
Sze
,
High-Speed Semiconductor Devices
(
Wiley-Interscience
,
New York
,
1990
), p. 653.
61.
S.
Kang
,
B.
Choi
, and
B.
Kim
, “
Linearity analysis of CMOS for RF application
,”
IEEE Trans. Microw. Theory Tech.
51
,
972
977
(
2003
).
You do not currently have access to this content.