A 7-nm-thick monolayer comprising myristate-capped silver nanoparticles (AgNPs) was fabricated by first drop casting an AgNP solution on the surface of a 10–100 μl water drop placed on a solid substrate. With the natural evaporation of the water, a monolayer slowly descended onto the substrate, the latter containing an array of 2.5-μm-diameter and 200-nm-deep holes, and finally formed circular freestanding monolayers in the holes. Nanoindentation measurement based on atomic force microscopy was carried out on the circular freestanding monolayer at its center, and the extending and retracting force–indentation curves were recorded to analyze further the mechanical properties of the monolayer. The force–indentation curves were evidently nonlinear, and so a two-term continuum-mechanics theory was used to interpret the results. By fitting the force–indentation curves using a two-term equation, the prestress and Young’s modulus of the freestanding AgNP monolayer were obtained as approximately 0.05 N/m and several gigapascals, respectively, which are consistent with the results reported in the literature. For comparison, we also studied the mechanical responses of AgNP monolayers and bilayers on a soft polydimethylsiloxane (PDMS) substrate by using nanoindentation. Because the AgNP monolayer was stiffer than the PDMS substrate, it was possible to measure the mechanical response of the former despite it being only 7 nm thick. The mechanical strength of the freestanding AgNP monolayers was considered to be dominated by the attractive interactions between the interdigitated hydrocarbon chains of the myristate.

1.
H.
Yang
,
N.
Coombs
,
I.
Sokolov
, and
G. A.
Ozin
,
Nature
381
,
589
(
1996
).
2.
C.
Jiang
,
S.
Markutsya
,
Y.
Pikus
, and
V.
Tsukruk
,
Nat. Mater.
3
,
721
(
2004
).
3.
J.
He
,
X.
Lin
,
H.
Chan
,
L.
Vukovic
,
P.
Kral
, and
H. M.
Jaeger
,
Nano Lett.
11
,
2430
(
2011
).
4.
G. J.
McShane
,
M.
Boutchich
,
A. S.
Phani
,
D. F.
Moore
, and
T. J.
Lu
,
J. Micromech. Microeng.
16
,
1926
(
2006
).
5.
C.
Jin
,
A.
Davoodabadi
,
J.
Li
,
Y.
Wang
, and
T.
Singler
,
J. Mech. Phys. Solids
100
,
85
(
2017
).
6.
H.
Hirakata
,
T.
Maruyama
,
A.
Yonezu
, and
K.
Minoshima
,
J. Appl. Phys.
133
,
203503
(
2013
).
7.
T.
Kondo
,
H.
Hirakata
, and
K.
Minoshima
,
Int. J. Fatigue
103
,
444
(
2017
).
8.
H.
Hirakata
,
R.
Kotoge
,
T.
Kameyama
,
T.
Kondo
,
M.
Sakihara
, and
K.
Minoshima
,
Proc. Struct. Integr.
2
,
1335
(
2016
).
9.
I. W.
Frank
,
D. M.
Tanenbaum
,
A. M.
van der Zande
, and
P. L.
McEuen
,
J. Vac. Sci. Technol. B
25
,
2558
(
2007
).
10.
M.
Poot
and
H. S. J.
van der Zant
,
Appl. Phys. Lett.
92
,
063111
(
2008
).
11.
J.
Jin
,
Y.
Sugiyama
,
K.
Mitsui
,
H.
Arakawa
, and
I.
Ichinose
,
Chem. Commun.
0
,
954
(
2008
).
12.
J.
He
,
P.
Kanjanoboos
,
N.
Laszlo Frazer
,
A.
Weis
,
X.
Lin
, and
H. M.
Jaeger
,
Small
6
,
1449
(
2010
).
13.
M.
Gauvin
,
Y.
Wan
,
I.
Arfaoui
, and
M.
Pileni
,
J. Phys. Chem. C
118
,
5005
(
2014
).
14.
H.
Zhu
,
Y.
Wang
,
J.
Xiao
,
M.
Liu
,
S.
Xiong
,
Z. J.
Wong
,
Z.
Ye
,
Y.
Ye
,
X.
Yin
, and
X.
Zhang
,
Nat. Nanotechnol.
10
,
151
(
2014
).
15.
C.
Guan
,
L.
Zhang
,
S.
Liu
,
Y.
Wang
,
W.
Huang
,
C.
Zhang
, and
J.
Liao
,
Langmuir
31
,
3738
(
2015
).
16.
R.
Zhang
,
V.
Koutsos
, and
R.
Cheung
,
Appl. Phys. Lett.
108
,
042104
(
2016
).
17.
A.
Raveendran
and
M. V.
Meli
,
ACS Omega
2
,
4411
(
2017
).
18.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
19.
N.
Felidj
,
J.
Aubard
,
G.
Levi
,
J. R.
Krenn
,
A.
Hohenau
,
G.
Schider
,
A.
Leitner
, and
F. R.
Aussenegg
,
Appl. Phys. Lett.
82
,
3095
(
2003
).
20.
E.
Usukura
,
S.
Shinohara
,
K.
Okamoto
,
J.
Lim
,
K.
Char
, and
K.
Tamada
,
Appl. Phys. Lett.
104
,
121906
(
2014
).
21.
S.
Masuda
,
Y.
Yanase
,
E.
Usukura
,
S.
Ryuzaki
,
P.
Wang
,
K.
Okamoto
,
T.
Kuboki
,
S.
Kidoaki
, and
K.
Tamada
,
Sci. Rep.
7
,
3720
(
2017
).
22.
S.
Markutsya
,
C.
Jiang
,
Y.
Pikus
, and
V. V.
Tsukruk
,
Adv. Funct. Mater.
15
,
771
(
2005
).
23.
B.
Jiang
,
D. S.
Kommireddy
, and
V. V.
Tsukruk
,
Adv. Funct. Mater.
16
,
27
(
2006
).
24.
K. E.
Mueggenburg
,
X.
Lin
,
R. H.
Goldsmith
, and
H. M.
Jaeger
,
Nat. Mater.
6
,
656
(
2007
).
25.
Y.
Wang
,
H.
Chan
,
B.
Narayanan
,
S. P.
McBride
,
S. K. R. S.
Sankaranarayanan
,
X.
Lin
, and
H. M.
Jaeger
,
ACS Nano
11
,
8026
(
2017
).
26.
W.
Cheng
,
M. J.
Campolongo
,
J. J.
Cha
,
S. J.
Tan
,
C. C.
Umbach
,
D. A.
Muller
, and
D.
Luo
,
Nat. Mater.
8
,
519
(
2009
).
27.
H.
Qin
,
J.
Jin
,
X.
Peng
, and
I.
Ichinose
,
J. Mater. Chem.
20
,
858
(
2010
).
28.
K. M.
Salerno
,
D. S.
Bolintineanu
,
J. M. D.
Lane
, and
G. S.
Grest
,
Phys. Rev. Lett.
113
,
258301
(
2014
).
29.
C.
Keum
,
N.
Ishii
,
K.
Michioka
,
P.
Wulandari
,
K.
Tamada
,
M.
Furusawa
, and
H.
Fukushima
,
J. Nonlinear Opt. Phys. Mater.
17
,
131
(
2008
).
30.
M.
Toma
,
K.
Toma
,
K.
Michioka
,
Y.
Ikezoe
,
D.
Obara
,
K.
Okamoto
, and
K.
Tamada
,
Phys. Chem. Chem. Phys.
13
,
7459
(
2013
).
31.
N.
Saito
,
P.
Wang
,
K.
Okamoto
,
S.
Ryuzaki
, and
K.
Tamada
,
Nanotechnology
28
,
435705
(
2017
).
32.
M.
Tamura
,
K.
Okamoto
,
K.
Tamada
, and
T.
Iida
,
Appl. Phys. Lett.
112
,
033106
(
2018
).
33.
P.
Wang
,
K.
Okamoto
, and
K.
Tamada
,
Adv. Mater. Interfaces
1
,
1400268
(
2014
).
34.
P.
Kanjanaboos
,
A.
Joshi-Imre
,
X.
Lin
, and
H.
Jaeger
,
Nano Lett.
11
,
2567
(
2011
).
35.
A. A.
Pelegri
and
X.
Huang
,
Compos. Sci. Technol.
68
,
147
(
2005
).
36.
J.
Song
,
J. F. L.
Duval
,
M. A.
Cohen Stuart
,
H.
Hillborg
,
U.
Gunst
,
H. F.
Arlinghaus
, and
J.
Vancso
,
Langmuir
23
,
5430
(
2007
).
37.
D.
Ebeling
,
D.
van der Ende
, and
F.
Mugele
,
Nanotechnology
22
,
305706
(
2011
).
38.
Z.
Wang
,
A. A.
Volinsky
, and
N. D.
Gallant
,
J. Appl. Polym. Sci.
131
,
41050
(
2014
).
39.
Z.
Wang
,
A. A.
Volinsky
, and
N. D.
Gallant
,
J. Appl. Polym. Sci.
132
,
41384
(
2015
).
40.
W. C.
Oliver
and
C. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
41.
R.
Saha
and
W. D.
Nix
,
Acta Mater.
50
,
23
(
2002
).

Supplementary Material

You do not currently have access to this content.