We study the effects of hydrostatic pressure (HP) compression on the superconducting transition of severely strained Nb samples, whose grain sizes are reduced to the submicrometer level. Engineered granularity by high-pressure torsion (HPT) treatment changes the strength of coupling between submicrometer-scale grains and introduces lattice strain. We attempt to utilize the initially accumulated shear strain in the starting material for increasing the superconducting transition temperature Tc under HP compression. The HP effects on non-strained Nb have already been investigated in the pressure regime over 100 GPa by Struzhkin et al. [Phys. Rev. Lett. 79, 4262 (1997)], and Tc reportedly exhibited an increase from 9.2 to 9.9 K at approximately 10 GPa. (1) Slightly strained Nb in the HPT treatment exhibits the increase in Tc under HP due to the strengthening of the intergrain coupling, so the pressure scale of the pressure response observed by Struzhkin et al. is reduced to approximately one-seventh at the maximum. (2) Prominently strained Nb in the HPT treatment exhibits the increase in Tc under HP due to a reduction in structural symmetry at the unit-cell level: In a Nb sample subjected to HPT (6 GPa, 10 revolutions), Tc exceeds 9.9 K at approximately 2 GPa. According to our first-principle calculations, the reduction in the structural symmetry affords an increase in the density of states at the Fermi energy, thereby yielding a prominent increase in Tc at low pressures.

1.
J.
Mayoh
and
A. M.
García-García
,
Phys. Rev. B
90
,
134513
(
2014
).
2.
H.
Deguchi
,
K.
Koyama
,
M.
Yasunaka
,
S.
Takagi
,
N.
Nagano
, and
K.
Mizuno
,
J. Phys. Chem. Solid
63
,
1081
(
2002
).
3.
K.
Koyama
,
H.
Deguchi
,
S.
Takagi
, and
K.
Mizuno
,
J. Low Temp. Phys.
131
,
595
(
2003
).
4.
J. S.
Schilling
, in
Handbook of High-Temperature Superconductivity
, edited by
J. R.
Schrieffer
(
Springer
,
New York
,
2007
), pp.
427
462
.
5.
I.
Bashkin
,
V.
Tissen
,
M.
Nefedova
, and
E.
Ponyatovsky
,
Physica C
453
,
12
(
2007
).
7.
J. K.
Hulm
and
B. B.
Goodman
,
Phys. Rev.
106
,
659
(
1957
).
8.
T.
Nishizaki
,
S.
Lee
,
Z.
Horita
,
T.
Sasaki
, and
N.
Kobayashi
,
Physica C
493
,
132
(
2013
).
9.
M.
Mito
,
H.
Matsui
,
K.
Tsuruta
,
T.
Yamaguchi
,
K.
Nakamura
,
H.
Deguchi
,
N.
Shirakawa
,
H.
Adachi
,
T.
Yamasaki
,
H.
Iwaoka
et al.,
Sci. Rep.
5
,
36337
(
2016
).
10.
R.
Valiev
,
Y.
Estrin
,
Z.
Horita
,
T.
Langdon
,
M.
Zehetbauer
, and
Y.
Zhu
,
JOM
58
,
33
(
2006
).
11.
R.
Valiev
,
R.
Islamgaliev
, and
I.
Alexandrov
,
Prog. Mater. Sci.
45
,
103
(
2000
).
12.
P. W.
Bridgman
,
Phys. Rev.
48
,
825
(
1935
).
13.
N. A.
Smirnova
,
V. I.
Levit
,
V. I.
Pilyugin
,
R. I.
Kuznetsov
,
L. S.
Davydova
, and
V. A.
Sazonova
,
Fiz. Metal. Metalloved.
61
,
1170
(
1986
).
14.
Y.
Harai
,
Y.
Ito
, and
Z.
Horita
,
Scr. Mater.
58
,
469
(
2008
).
15.
K.
Edalati
and
Z.
Horita
,
Mater. Sci. Eng. A
652
,
325
(
2016
).
16.
V. M.
Segal
,
V. I.
Reznikov
,
A. E.
Drobyshevskiy
, and
V. I.
Kopylov
,
Russ. Metall.
1
,
99
(
1981
).
17.
A.
Azushima
,
R.
Kopp
,
A.
Korhonen
,
D.
Yang
,
F.
Micari
,
G.
Lahoti
,
P.
Groche
,
J.
Yanagimoto
,
N.
Tsuji
,
A.
Rosochowski
et al.,
CIRP Ann. Manuf. Tech.
57
,
716
(
2008
).
18.
Y.
Saito
,
H.
Utsunomiya
,
N.
Tsuji
, and
T.
Sakai
,
Acta Mater.
47
,
579
(
1999
).
19.
A.
Zhilyaev
and
T.
Langdon
,
Prog. Mater. Sci.
53
,
893
(
2008
).
20.
S.
Bose
,
P.
Raychaudhuri
,
R.
Banerjee
,
P.
Vasa
, and
P.
Ayyub
,
Phys. Rev. Lett.
95
,
147003
(
2005
).
21.
W. E.
Gardner
and
T. F.
Smith
,
Phys. Rev.
144
,
233
(
1966
).
22.
W.
Gey
and
G.
van Heyden
,
Z. Phys.
193
,
65
(
1966
).
23.
D.
Köhnlein
,
Z. Phys.
208
,
142
(
1968
).
25.
N. B.
Brandt
and
E.
Papp
,
Sov. Phys. J. Exp. Theor. Phys.
30
,
595
(
1970
), available at http://www.jetp.ac.ru/cgi-bin/dn/e_030_04_0595.pdf.
27.
V. V.
Struzhkin
,
Y. A.
Timofeev
,
R. J.
Hemley
, and
H.
kwang Mao
,
Phys. Rev. Lett.
79
,
4262
(
1997
).
28.
S.
Bose
,
P.
Raychaudhuri
,
R.
Banerjee
, and
P.
Ayyub
,
Phys. Rev. B
74
,
224502
(
2006
).
29.
S.
Lee
and
Z.
Horita
,
Mater. Trans.
53
,
38
(
2012
).
30.
K.
Edalati
,
J. M.
Cubero-Sesin
,
A.
Alhamidi
,
I.
Mohamed
, and
Z.
Horita
,
Mater. Sci. Eng. A
613
,
103
(
2014
).
31.
P.
Das
,
C. V.
Tomy
,
S. S.
Banerjee
,
H.
Takeya
,
S.
Ramakrishnan
, and
A. K.
Grover
,
Phys. Rev. B
78
,
214504
(
2008
).
32.
T.
Tomita
,
J. S.
Schilling
,
L.
Chen
,
B. W.
Veal
, and
H.
Claus
,
Phys. Rev. B
74
,
064517
(
2006
).
33.
A. W.
Webb
,
D. U.
Gubser
, and
L. C.
Towle
,
Rev. Sci. Instrum.
47
,
59
(
1976
).
34.
M.
Ishizuka
,
M.
Iketani
, and
S.
Endo
,
Phys. Rev. B
61
,
R3823
(
2000
).
35.
M.
Mito
,
M.
Hitaka
,
T.
Kawae
,
K.
Takeda
,
T.
Kitai
, and
N.
Toyoshima
,
Jpn. J. Appl. Phys.
40
,
6641
(
2001
).
36.
I.
Fujishiro
,
G. J.
Piermarini
,
S.
Block
, and
R. G.
Munro
, in
High Pressure in Research and Industry: Proceedings of the 8th AIRAPT Conference
, edited by
C. M.
Backman
,
T.
Johannisson
, and
L.
Tegner
(Arkitektkopia, Uppsala,
Sweden
,
1982
), Vol. II, p.
608
.
37.
G. J.
Piermarini
,
S.
Block
,
J. D.
Barnett
, and
R. A.
Forman
,
J. Appl. Phys.
46
,
2774
(
1975
).
38.
A.
Fujiwara
,
K.
Ishii
,
T.
Watanuki
,
H.
Suematsu
,
H.
Nakao
,
K.
Ohwada
,
Y.
Fujii
,
Y.
Murakami
,
T.
Mori
,
H.
Kawada
et al.,
J. Appl. Cryst.
33
,
1241
(
2000
).
39.
T.
Varga
,
A. P.
Wilkinson
, and
R. J.
Angel
,
Rev. Sci. Instrum.
74
,
4564
(
2003
).
40.
Y. A.
Freiman
and
H. J.
Jodl
,
Phys. Rep.
401
,
1
(
2004
).
41.
K.
Takemura
and
A. K.
Singh
,
Phys. Rev. B
73
,
224119
(
2006
).
42.
J.
Yamauchi
,
M.
Tsukada
,
S.
Watanabe
, and
O.
Sugino
,
Phys. Rev. B
54
,
5586
(
1996
).
43.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
44.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
46.
T.
Fujiwara
,
S.
Yamamoto
, and
Y.
Ishii
,
J. Phys. Soc. Jpn.
72
,
777
(
2003
).
47.
Y.
Nohara
,
S.
Yamamoto
, and
T.
Fujiwara
,
Phys. Rev. B
79
,
195110
(
2009
).
48.
K. H.
Lee
and
K. J.
Chang
,
Phys. Rev. B
54
,
1419
(
1996
).
49.
W. L.
McMillan
,
Phys. Rev.
167
,
331
(
1968
).
You do not currently have access to this content.