Conversion of heat-flux from a steady state temperature difference to mechanical vibration is demonstrated in graphene nanoribbons using direct non-equilibrium molecular dynamics. We observe that this effect is independent of the method of imposing the temperature gradient, heat flux, as well as imposed boundary conditions. We propose that simply dividing the nanoribbon in long and short sections using a partially immobilized area will lead to excitation of long-wavelength vibrations into the long section of the nanoribbon. This results in simpler architectures for heat-to-vibration converter devices based on graphene. Furthermore, we observe that applying tensile axial strain to nanoribbons facilitates vibrational instability by reducing the required threshold heat flux or the temperature gradient. Finally, we discuss the role played by Umklapp scattering for physical mechanisms behind these observations.

1.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
,
MRS Bull.
37
,
1273
1281
(
2012
).
2.
M.
Shen
,
P. K.
Schelling
, and
P.
Keblinski
,
Phys. Rev. B
88
,
045444
(
2013
).
3.
V. E.
Dorgan
,
A.
Behnam
,
H. J.
Conley
,
K. I.
Bolotin
, and
E.
Pop
,
Nano Lett.
13
,
4581
(
2013
).
4.
S.
Hu
,
Z.
Zhang
,
P.
Jiang
,
J.
Chen
,
S.
Volz
,
M.
Nomura
, and
B.
Li
,
J. Phys. Chem. Lett.
9
,
3959
(
2018
).
5.
L.
Yang
,
J.
Chen
,
N.
Yang
, and
B.
Li
,
Int. J. Heat Mass Transfer
91
,
428
(
2015
).
6.
M.
An
,
Q.
Song
,
X.
Yu
,
H.
Meng
,
D.
Ma
,
R.
Li
,
Z.
Jin
,
B.
Huang
, and
N.
Yang
,
Nano Lett.
17
,
5805
(
2017
).
7.
O.
Hod
and
G. E.
Scuseria
,
Nano Lett.
9
,
2619
(
2009
).
8.
S.
Lee
,
D.
Broido
,
K.
Esfarjani
, and
G.
Chen
,
Nat. Commun.
6
,
6290
(
2015
).
9.
Z.
Wang
,
R.
Xie
,
C. T.
Bui
,
D.
Liu
,
X.
Ni
,
B.
Li
, and
J. T. L.
Thong
,
Nano Lett.
11
,
113
(
2011
).
10.
H.
Wang
,
S.
Hu
,
K.
Takahashi
,
X.
Zhang
,
H.
Takamatsu
, and
J.
Chen
,
Nat. Commun.
8
,
15843
(
2017
).
11.
X.
Zhang
,
M.
Hu
, and
D.
Poulikakos
,
Nano Lett.
12
,
3410
(
2012
).
12.
K.
Zheng
,
L.
Wang
,
S.
Bai
,
J.
Yu
,
Z.
Tang
, and
Z.
Huang
,
Phys. B Condens. Matter
434
,
64
(
2014
).
13.
W.-J.
Yao
and
B.-Y.
Cao
,
Phys. Lett. A
380
,
2105
(
2016
).
14.
X.-K.
Chen
,
J.
Liu
,
Z.-H.
Peng
,
D.
Du
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
110
,
091907
(
2017
).
15.
B.
Liu
,
J. A.
Baimova
,
C. D.
Reddy
,
S. V.
Dmitriev
,
W. K.
Law
,
X. Q.
Feng
, and
K.
Zhou
,
Carbon
79
,
236
(
2014
).
16.
Y.-Y.
Liu
,
W.-X.
Zhou
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
105
,
203111
(
2014
).
17.
Y.-Y.
Liu
,
W.-X.
Zhou
, and
K.-Q.
Chen
,
Sci. Rep.
5
,
17525
(
2015
).
18.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
19.
J.
Chen
,
J. H.
Walther
, and
P.
Koumoutsakos
,
Nano Lett.
14
,
819
(
2014
).
20.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
,
J. Chem. Phys.
112
,
6472
(
2000
).
21.
F.
Müller-Plathe
,
J. Chem. Phys.
106
,
6082
(
1997
).
22.
L.
Lindsay
and
D. A.
Broido
,
Phys. Rev. B
81
,
205441
(
2010
).
23.
D.
Ma
,
H.
Ding
,
X.
Wang
,
N.
Yang
, and
X.
Zhang
,
Int. J. Heat Mass Transfer
108
,
940
(
2017
).
24.
D.
Shiri
and
A.
Isacsson
, e-print arXiv:1707.06572 (2017).
25.
P.
Hirel
,
Comput. Phys. Commun.
197
,
212
(
2015
).
26.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
27.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
28.
J.-P.
Eckmann
,
S. O.
Kamphorst
, and
D.
Ruelle
,
Europhys. Lett.
4
,
973
(
1987
).
29.
S.
Bhowmick
and
V. B.
Shenoy
,
J. Chem. Phys.
125
,
164513
(
2006
).
30.
K.
Tada
,
T.
Funatani
,
S.
Konabe
,
K.
Sasaoka
,
M.
Ogawa
,
S.
Souma
, and
T.
Yamamoto
,
Jpn. J. Appl. Phys.
56
,
025102
(
2017
).
31.
M.
Huang
,
H.
Yan
,
C.
Chen
,
D.
Song
,
T. F.
Heinz
, and
J.
Hone
,
Proc. Natl. Acad. Sci.
106
,
7304
(
2009
).
32.
V. L.
Gurevitch
,
Transport in Phonon Systems
(
Elsevier Science Publishers
,
1986
).
33.
K.
Kunal
and
N. R.
Aluru
,
J. Appl. Phys.
114
,
084302
(
2013
).
34.
N.
Yang
,
G.
Zhang
, and
B.
Li
,
Appl. Phys. Lett.
95
,
033107
(
2009
).
35.
A.
Benyamini
,
A.
Hamo
,
S. V.
Kusminskiy
,
F.
von Oppen
, and
S.
Ilani
,
Nat. Phys.
10
,
151
(
2014
).
36.
R.
De Alba
,
F.
Massel
,
I. R.
Storch
,
T. S.
Abhilash
,
A.
Hui
,
P. L.
McEuen
,
H. G.
Craighead
, and
J. M.
Parpia
,
Nat. Nanotechnol.
11
,
741
(
2016
).
You do not currently have access to this content.