It is important to understand the rotational behavior of magnetic nanoparticles (MNPs) in liquids under an alternating magnetic field for their successful application in biomedical fields. These applications include magnetic hyperthermia therapy and magnetic particle imaging. In particular, recent theoretical studies suggest that the physical rotation of MNP itself causes a significant change in the magnetization response of MNPs. However, because it is hard to distinguish the contribution of the physical rotation to the magnetization curve, its behavior under an alternating field has not been established to date. In this study, we measured the absorbance change of maghemite MNP suspension. We observed magnetically induced linear dichroism under a damped oscillatory magnetic field (DOMF) with Faraday configuration, where the propagation of light was parallel to the magnetic field. Accompanied by the application of DOMF, an absorbance change was observed. Through numerical simulations, it was revealed that the waveform of the absorbance change reflects the behavior of the physical rotation. From the analysis of the waveform, it was experimentally found that the easy axis of the MNP aligns partially and oscillates with the small amplitude under an alternating magnetic field. The rotation mechanism of the MNP in liquids under an alternating magnetic field is proposed based on the observed waveform of the absorbance change. We also investigated the influences of the viscosity and the field frequency on the rotation behavior and confirmed that these results were consistent with the mechanism.

1.
N.
Lee
,
D.
Yoo
,
D.
Ling
,
M. H.
Cho
,
T.
Hyeon
, and
J.
Cheon
, “
Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy
,”
Chem. Rev.
115
,
10637
10689
(
2015
).
2.
L.
Wu
,
A.
Mendoza-Garcia
,
Q.
Li
, and
S.
Sun
, “
Organic phase syntheses of magnetic nanoparticles and their applications
,”
Chem. Rev.
116
,
10473
10512
(
2016
).
3.
D.
Ho
,
X.
Sun
, and
S.
Sun
, “
Monodisperse magnetic nanoparticles for theranostic applications
,”
Acc. Chem. Res.
44
,
875
882
(
2011
).
4.
I.
Conde-Leboran
,
D.
Baldomir
,
C.
Martinez-Boubeta
,
O.
Chubykalo-Fesenko
,
M.
del Puerto Morales
,
G.
Salas
,
D.
Cabrera
,
J.
Camarero
,
F. J.
Teran
, and
D.
Serantes
, “
A single picture explains diversity of hyperthermia response of magnetic nanoparticles
,”
J. Phys. Chem. C
119
,
15698
15706
(
2015
).
5.
E.
Alphandéry
,
S.
Faure
,
O.
Seksek
,
F.
Guyot
, and
I.
Chebbi
, “
Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy
,”
ACS Nano
5
,
6279
6296
(
2011
).
6.
B.
Gleich
and
J.
Weizenecker
, “
Tomographic imaging using the nonlinear response of magnetic particles
,”
Nature
435
,
1214
1217
(
2005
).
7.
L. M.
Bauer
,
S. F.
Situ
,
M. A.
Griswold
, and
A. C. S.
Samia
, “
Magnetic particle imaging tracers: State-of-the-art and future directions
,”
J. Phys. Chem. Lett.
6
,
2509
2517
(
2015
).
8.
R. M.
Ferguson
,
A. P.
Khandhar
,
S. J.
Kemp
,
H.
Arami
,
E. U.
Saritas
,
L. R.
Croft
,
J.
Konkle
,
P. W.
Goodwill
,
A.
Halkola
,
J.
Rahmer
,
J.
Borgert
,
S. M.
Conolly
, and
K. M.
Krishnan
, “
Magnetic particle imaging with tailored iron oxide nanoparticle tracers
,”
IEEE Trans. Med. Imaging
34
,
1077
1084
(
2015
).
9.
J.
Rahmer
,
A.
Halkola
,
B.
Gleich
,
I.
Schmale
, and
J.
Borgert
, “
First experimental evidence of the feasibility of multi-color magnetic particle imaging
,”
Phys. Med. Biol.
60
,
1775
(
2015
).
10.
C.
Wilhelm
,
F.
Gazeau
,
J.
Roger
,
J. N.
Pons
,
M. F.
Salis
,
R.
Perzynski
, and
J. C.
Bacri
, “
Binding of biological effectors on magnetic nanoparticles measured by a magnetically induced transient birefringence experiment
,”
Phys. Rev. E
65
,
031404
(
2002
).
11.
K.
Aurich
,
S.
Nagel
,
G.
Glöckl
, and
W.
Weitschies
, “
Determination of the magneto-optical relaxation of magnetic nanoparticles as a homogeneous immunoassay
,”
Anal. Chem.
79
,
580
586
(
2007
).
12.
M.
Köber
,
M.
Moros
,
F. L.
Franco
,
V.
Grazú
,
J. M.
de la Fuente
,
M.
Luna
, and
F.
Briones
, “
Nanoparticle-mediated monitoring of carbohydrate–lectin interactions using transient magnetic birefringence
,”
Anal. Chem.
86
,
12159
12165
(
2014
).
13.
X.
Zhang
,
D. B.
Reeves
,
I. M.
Perreard
,
W. C.
Kett
,
K. E.
Griswold
,
B.
Gimi
, and
J. B.
Weaver
, “
Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion
,”
Biosens. Bioelectron.
50
,
441
446
(
2013
).
14.
S. H.
Chung
,
A.
Hoffmann
,
K.
Guslienko
,
S. D.
Bader
,
C.
Liu
,
B.
Kay
,
L.
Makowski
, and
L.
Chen
, “
Biological sensing with magnetic nanoparticles using Brownian relaxation (invited)
,”
J. Appl. Phys.
97
,
10R101
(
2005
).
15.
A. M.
Rauwerdink
and
J. B.
Weaver
, “
Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes
,”
Appl. Phys. Lett.
96
,
033702
(
2010
).
16.
M.
Donolato
,
P.
Antunes
,
R. S.
Bejhed
,
T.
Zardán Gómez de la Torre
,
F. W.
Østerberg
,
M.
Strömberg
,
M.
Nilsson
,
M.
Strømme
,
P.
Svedlindh
,
M. F.
Hansen
, and
P.
Vavassori
, “
Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics
,”
Anal. Chem.
87
,
1622
1629
(
2015
).
17.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
, “
Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
,”
J. Appl. Phys.
109
,
083921
(
2011
).
18.
H.
Mamiya
and
B.
Jeyadevan
, “
Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields
,”
Sci. Rep.
1
,
157
(
2011
).
19.
B.
Mehdaoui
,
J.
Carrey
,
M.
Stadler
,
A.
Cornejo
,
C.
Nayral
,
F.
Delpech
,
B.
Chaudret
, and
M.
Respaud
, “
Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles
,”
Appl. Phys. Lett.
100
,
052403
(
2012
).
20.
N. A.
Usov
and
B. Y.
Liubimov
, “
Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia
,”
J. Appl. Phys.
112
,
023901
(
2012
).
21.
H.
Mamiya
and
B.
Jeyadevan
, “
Nonequilibrium magnetic response of anisotropic superparamagnetic nanoparticles and possible artifacts in magnetic particle imaging
,”
PLoS One
10
,
e0118156
(
2015
).
22.
D. B.
Reeves
and
J. B.
Weaver
, “
Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy
,”
Appl. Phys. Lett.
107
,
223106
(
2015
).
23.
T.
Yoshida
,
S.
Bai
,
A.
Hirokawa
,
K.
Tanabe
, and
K.
Enpuku
, “
Effect of viscosity on harmonic signals from magnetic fluid
,”
J. Magn. Magn. Mater.
380
,
105
110
(
2015
).
24.
S. A.
Shah
,
D. B.
Reeves
,
R. M.
Ferguson
,
J. B.
Weaver
, and
K. M.
Krishnan
, “
Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field
,”
Phys. Rev. B
92
,
094438
(
2015
).
25.
S.
Ota
,
R.
Kitaguchi
,
R.
Takeda
,
T.
Yamada
, and
Y.
Takemura
, “
Rotation of magnetization derived from Brownian relaxation in magnetic fluids of different viscosity evaluated by dynamic hysteresis measurements over a wide frequency range
,”
Nanomaterials
6
,
170
(
2016
).
26.
S.
Ota
and
Y.
Takemura
, “
Evaluation of easy-axis dynamics in a magnetic fluid by measurement and analysis of the magnetization curve in an alternating magnetic field
,”
Appl. Phys. Express
10
,
085001
(
2017
).
27.
M.
Suwa
and
H.
Watarai
, “
Optical extinction change of magnetic nanoparticle suspension under pulsed magnetic field
,”
J. Phys. Conf. Ser.
156
,
012025
(
2009
).
28.
Y. N.
Skibin
,
V. V.
Chekanov
, and
Y. L.
Raizer
, “
Birefringence in a ferromagnetic liquid
,”
J. Exp. Theor. Phys.
45
,
496
499
(
1977
); available at http://www.jetp.ac.ru/cgi-bin/e/index/e/45/3/p496?a=list
29.
P.
Scholten
, “
The origin of magnetic birefringence and dichroism in magnetic fluids
,”
IEEE Trans. Magn.
16
,
221
225
(
1980
).
30.
J. P.
Llewellyn
, “
Form birefringence in ferrofluids
,”
J. Phys. D Appl. Phys.
16
,
95
(
1983
).
31.
Y. L.
Raikher
and
P. C.
Scholten
, “
Magnetic colloid in an AC magnetic field: Constant birefringence effect
,”
J. Magn. Magn. Mater.
74
,
275
280
(
1988
).
32.
M.
Xu
and
P. J.
Ridler
, “
Linear dichroism and birefringence effects in magnetic fluids
,”
J. Appl. Phys.
82
,
326
332
(
1997
).
33.
F.
Bentivegna
,
J.
Ferré
,
M.
Nývlt
,
J. P.
Jamet
,
D.
Imhoff
,
M.
Canva
,
A.
Brun
,
P.
Veillet
,
Š
Višňovský
,
F.
Chaput
, and
J. P.
Boilot
, “
Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: Structural and magnetic properties
,”
J. Appl. Phys.
83
,
7776
7788
(
1998
).
34.
F.
Bentivegna
,
M.
Nyvlt
,
J.
Ferré
,
J. P.
Jamet
,
A.
Brun
,
S.
Vis˘n˘ovsky
, and
R.
Urban
, “
Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: Optical and magneto-optical properties
,”
J. Appl. Phys.
85
,
2270
2278
(
1999
).
35.
L.
Chen
,
J.
Li
,
X.
Qiu
,
Y.
Lin
,
X.
Liu
,
H.
Miao
, and
J.
Fu
, “
Magneto-optical effect in a system of colloidal particle having anisotropic dielectric property
,”
Opt. Commun.
316
,
146
151
(
2014
).
36.
G. A.
van Ewijk
,
G. J.
Vroege
, and
A. P.
Philipse
, “
Convenient preparation methods for magnetic colloids
,”
J. Magn. Magn. Mater.
201
,
31
33
(
1999
).
37.
Glycerine Producers’ Association
,
Physical Properties of Glycerine and Its Solutions
(
Glycerine Producers’ Association
,
1963
).
38.
M.
Suwa
,
S.
Tsukahara
, and
H.
Watarai
, “
Faraday rotation imaging microscope with microsecond pulse magnet
,”
J. Magn. Magn. Mater.
393
,
562
568
(
2015
).
39.
S.-F.
Ángel
and
J. C.
Martín
, “
Analysis of the optical transmission of a ferrofluid by an electromagnetic mixture law
,”
J. Phys. D Appl. Phys.
51
,
135001
(
2018
).
40.
M.
Xiangshen
,
H.
Yan
,
H.
Zhenghong
,
L.
Yueqiang
,
L.
Xiaodong
,
L.
Decai
,
L.
Jian
, and
Q.
Xiaoyan
, “
Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique
,”
Meas. Sci. Technol.
29
,
065202
(
2018
).
41.
H.
Takei
and
S.
Chiba
, “
Vacancy ordering in epitaxially-grown single crystals of γ-Fe2O3
,”
J. Phys. Soc. Jpn.
21
,
1255
1263
(
1966
).
42.
P.
Scholten
, “
Magnetic measurements on particles in suspension
,”
IEEE Trans. Magn.
11
,
1400
1402
(
1975
).
43.
B. M. I.
van der Zande
,
G. J. M.
Koper
, and
H. N. W.
Lekkerkerker
, “
Alignment of rod-shaped gold particles by electric fields
,”
J. Phys. Chem. B
103
,
5754
5760
(
1999
).
44.
H.
Mamiya
and
B.
Jeyadevan
, “
Magnetic hysteresis loop in a superparamagnetic state
,”
IEEE Trans. Magn.
50
,
1
4
(
2014
).
45.
D. B.
Reeves
and
J. B.
Weaver
, “
Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations
,”
J. Appl. Phys.
117
,
233905
(
2015
).
46.
R. J.
Deissler
,
Y.
Wu
, and
M. A.
Martens
, “
Dependence of Brownian and Néel relaxation times on magnetic field strength
,”
Med. Phys.
41
,
012301
(
2014
).
47.
D.
Eberbeck
,
F.
Wiekhorst
,
U.
Steinhoff
, and
L.
Trahms
, “
Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry
,”
J. Phys. Condens. Matter
18
,
S2829
(
2006
).
48.
T.
Yoshida
and
K.
Enpuku
, “
Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear Brownian relaxation region
,”
Jpn. J. Appl. Phys.
48
,
127002
(
2009
).
49.
M.
Domínguez
,
D.
Ortega
,
J. S.
Garitaonandía
,
R.
Litrán
,
C.
Barrera-Solano
,
E.
Blanco
, and
M.
Ramírez-del-Solar
, “
Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the sol–gel method
,”
J. Magn. Magn. Mater.
320
,
e725
e729
(
2008
).
50.
M. M.
van Oene
,
L. E.
Dickinson
,
F.
Pedaci
,
M.
Köber
,
D.
Dulin
,
J.
Lipfert
, and
N. H.
Dekker
, “
Biological magnetometry: Torque on superparamagnetic beads in magnetic fields
,”
Phys. Rev. Lett.
114
,
218301
(
2015
).
51.
L. H.
Reddy
,
J. L.
Arias
,
J.
Nicolas
, and
P.
Couvreur
, “
Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
,”
Chem. Rev.
112
,
5818
5878
(
2012
).

Supplementary Material

You do not currently have access to this content.