Recently developed field of all-dielectric nanophotonics allowed for the observation of the Kerker effect, i.e., unidirectional scattering of electromagnetic radiation by a dielectric particle in optical frequency range. In this paper, we consider the analogue of this effect for localized waves which manifests itself as an interference of the evanescent tails of the optical waveguide modes. Specifically, we design a discrete nanophotonic waveguide that supports two degenerate modes characterized by different symmetries with respect to the plane that contains the waveguide axis, leading to an asymmetric field distribution of the propagating wave under appropriate excitation conditions. We perform numerical simulations of the excitation of such a waveguide with a point dipole and predict that its polarization state can be encoded into the field pattern of the signal propagating along the waveguide and transferred for relatively large distances. We also propose a planar directional coupler that consists of a developed discrete waveguide and conventional single-mode dielectric waveguides that exploit the interference effect for routing single photons generated by circularly polarized quantum emitters.

1.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk’yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
,
aag2472
(
2016
), see http://science.sciencemag.org/content/354/6314/aag2472.full.pdf.
2.
I.
Staude
and
J.
Schilling
, “
Metamaterial-inspired silicon nanophotonics
,”
Nat. Photonics
11
,
274
(
2017
).
3.
J. A.
Schuller
,
R.
Zia
,
T.
Taubner
, and
M. L.
Brongersma
, “
Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles
,”
Phys. Rev. Lett.
99
,
107401
(
2007
).
4.
A. B.
Evlyukhin
,
C.
Reinhardt
,
A.
Seidel
,
B. S.
Luk’yanchuk
, and
B. N.
Chichkov
, “
Optical response features of Si-nanoparticle arrays
,”
Phys. Rev. B
82
,
045404
(
2010
).
5.
A.
García-Etxarri
,
R.
Gómez-Medina
,
L. S.
Froufe-Pérez
,
C.
López
,
L.
Chantada
,
F.
Scheffold
,
J.
Aizpurua
,
M.
Nieto-Vesperinas
, and
J. J.
Sáenz
, “
Strong magnetic response of submicron silicon particles in the infrared
,”
Opt. Express
19
,
4815
4826
(
2011
).
6.
A. B.
Evlyukhin
,
S. M.
Novikov
,
U.
Zywietz
,
R. L.
Eriksen
,
C.
Reinhardt
,
S. I.
Bozhevolnyi
, and
B. N.
Chichkov
, “
Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region
,”
Nano Lett.
12
,
3749
3755
(
2012
). pMID: 22703443
7.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
Y. H.
Fu
,
J.
Zhang
, and
B.
Luk’yanchuk
, “
Magnetic light
,”
Sci. Rep.
2
,
492
(
2012
), e-print arXiv:1205.1610.
8.
J.
Yan
,
P.
Liu
,
Z.
Lin
,
H.
Wang
,
H.
Chen
,
C.
Wang
, and
G.
Yang
, “
Directional fano resonance in a silicon nanosphere dimer
,”
ACS Nano
9
,
2968
2980
(
2015
).
9.
T.
Shibanuma
,
T.
Matsui
,
T.
Roschuk
,
J.
Wojcik
,
P.
Mascher
,
P.
Albella
, and
S. A.
Maier
, “
Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers
,”
ACS Photonics
4
,
489
494
(
2017
).
10.
D.
Smirnova
and
Y. S.
Kivshar
, “
Multipolar nonlinear nanophotonics
,”
Optica
3
,
1241
(
2016
), e-print arXiv:1609.02057.
11.
R. M.
Bakker
,
D.
Permyakov
,
Y. F.
Yu
,
D.
Markovich
,
R.
Paniagua-Domínguez
,
L.
Gonzaga
,
A.
Samusev
,
Y.
Kivshar
,
B.
Luk’yanchuk
, and
A. I.
Kuznetsov
, “
Magnetic and electric hotspots with silicon nanodimers
,”
Nano Lett.
15
,
2137
2142
(
2015
).
12.
K.
Baryshnikova
,
D.
Filonov
,
C.
Simovski
,
A.
Evlyukhin
,
A.
Kadochkin
,
E.
Nenasheva
,
P.
Ginzburg
, and
A. S.
Shalin
, “
Giant magnetoelectric field separation via anapole-type states in high-index dielectric structures
,”
Phys. Rev. B
98
,
1
9
(
2018
).
13.
R.
Paniagua-Domínguez
,
F.
López-Tejeira
,
R.
Marqués
, and
J. A.
Sánchez-Gil
, “
Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials
,”
New J. Phys.
13
,
123017
(
2011
).
14.
W.
Liu
,
A.
Miroshnichenko
,
D.
Neshev
, and
Y.
Kivshar
, “
Broadband unidirectional scattering by magneto-electric core-shell nanoparticles
,”
ACS Nano
6
,
5489
5497
(
2012
).
15.
Y.
Fu
,
A.
Kuznetsov
,
A.
Miroshnichenko
,
Y.
Yu
, and
B.
Luk’yanchuk
, “
Directional visible light scattering by silicon nanoparticles
,”
Nat. Commun.
4
,
1527
(
2013
).
16.
M.
Kerker
,
D.-S.
Wang
, and
C. L.
Giles
, “
Electromagnetic scattering by magnetic spheres
,”
J. Opt. Soc. Am.
73
,
765
767
(
1983
).
17.
J.
van de Groep
and
A.
Polman
, “
Designing dielectric resonators on substrates: Combining magnetic and electric resonances
,”
Opt. Express
21
,
26285
26302
(
2013
).
18.
V. E.
Babicheva
and
A. B.
Evlyukhin
, “
Resonant lattice kerker effect in metasurfaces with electric and magnetic optical responses
,”
Laser Photonics Rev.
11
,
1700132
(
2017
), see https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201700132.
19.
W.
Liu
and
Y. S.
Kivshar
, “
Generalized kerker effects in nanophotonics and meta-optics [invited]
,”
Opt. Express
26
,
13085
13105
(
2018
).
20.
M.
Decker
,
I.
Staude
,
M.
Falkner
,
J.
Dominguez
,
D. N.
Neshev
,
I.
Brener
,
T.
Pertsch
, and
Y. S.
Kivshar
, “
High-efficiency dielectric huygens surfaces
,”
Adv. Optical Mater.
3
,
813
820
(
2015
), see https://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201400584.
21.
Y. F.
Yu
,
A. Y.
Zhu
,
R.
Paniagua-Domínguez
,
Y. H.
Fu
,
B.
Luk’yanchuk
, and
A. I.
Kuznetsov
, “
High-transmission dielectric metasurface with 2π phase control at visible wavelengths
,”
Laser Photonics Rev.
9
,
412
418
(
2015
).
22.
P.
Moitra
,
B. A.
Slovick
,
W.
Li
,
I. I.
Kravchencko
,
D. P.
Briggs
,
S.
Krishnamurthy
, and
J.
Valentine
, “
Large-scale all-dielectric metamaterial perfect reflectors
,”
ACS Photonics
2
,
692
698
(
2015
).
23.
V. E.
Babicheva
,
M. I.
Petrov
,
K. V.
Baryshnikova
, and
P. A.
Belov
, “
Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [invited]
,”
J. Opt. Soc. Am. B
34
,
18
28
(
2017
).
24.
P.
Lodahl
,
S.
Mahmoodian
, and
S.
Stobbe
, “
Interfacing single photons and single quantum dots with photonic nanostructures
,”
Rev. Mod. Phys.
87
,
347
400
(
2015
), e-print arXiv:1312.1079.
25.
K.
Bliokh
,
F.
Rodríguez-Fortuño
,
F.
Nori
, and
A.
Zayats
, “
Spin–orbit interactions of light
,”
Nat. Photonics
9
,
796
808
(
2015
).
26.
A.
Aiello
,
P.
Banzer
,
M.
Neugebauer
, and
G.
Leuchs
, “
From transverse angular momentum to photonic wheels
,”
Nat. Photonics
9
,
789
795
(
2015
).
27.
T. V.
Mechelen
and
Z.
Jacob
, “
Universal spin-momentum locking of evanescent waves
,”
Optica
3
,
118
126
(
2016
).
28.
I.
Söllner
,
S.
Mahmoodian
,
S. L.
Hansen
,
L.
Midolo
,
A.
Javadi
,
G.
Kiršansk
,
T.
Pregnolato
,
H.
El-Ella
,
E. H.
Lee
,
J. D.
Song
,
S.
Stobbe
, and
P.
Lodahl
, “
Deterministic photon–emitter coupling in chiral photonic circuits
,”
Nat. Nanotechnol.
10
,
775
778
(
2015
).
29.
D. F.
Kornovan
,
A. S.
Sheremet
, and
M. I.
Petrov
, “
Collective polaritonic modes in an array of two-level quantum emitters coupled to optical nanofiber
,”
Phys. Rev. B
94
,
245416
(
2016
).
30.
D. F.
Kornovan
,
M. I.
Petrov
, and
I. V.
Iorsh
, “
Transport and collective radiance in a basic quantum chiral optical model
,”
Phys. Rev. B
96
,
115162
(
2017
).
31.
F.
Le Kien
,
D. F.
Kornovan
,
S.
Sahar
,
S.
Hejazi
,
V. G.
Truong
,
M. I.
Petrov
,
S. N.
Chormaic
, and
T.
Busch
, “
Force of light on a two-level atom near an ultrathin optical fiber
,”
New J. Phys.
20
,
093031
(
2018
).
32.
R. R. Q. P. T.
Oude Weernink
,
P.
Barcellona
, and
S. Y.
Buhmann
, “
Lateral Casimir-Polder forces by breaking time-reversal symmetry
,”
Phys. Rev. A
97
,
032507
(
2018
).
33.
Y.
Huang
,
Y.
Shen
,
C.
Min
,
S.
Fan
, and
G.
Veronis
, “
Unidirectional reflectionless light propagation at exceptional points
,”
Nanophotonics
6
,
977
996
(
2017
).
34.
E.
Bor
,
M.
Turduev
,
U. G.
Yasa
,
H.
Kurt
, and
K.
Staliunas
, “
Asymmetric light transmission effect based on an evolutionary optimized semi-dirac cone dispersion photonic structure
,”
Phys. Rev. B
98
,
245112
(
2018
).
35.
P.
Lodahl
,
S.
Mahmoodian
,
S.
Stobbe
,
A.
Rauschenbeutel
,
P.
Schneeweiss
,
J.
Volz
,
H.
Pichler
, and
P.
Zoller
, “
Chiral quantum optics
,”
Nature
541
,
473
480
(
2017
).
36.
P. J.
Bock
,
P.
Cheben
,
J. H.
Schmid
,
J.
Lapointe
,
A.
Delâge
,
S.
Janz
,
G. C.
Aers
,
D.-X.
Xu
,
A.
Densmore
, and
T. J.
Hall
, “
Subwavelength grating periodic structures in silicon-on-insulator: A new type of microphotonic waveguide
,”
Opt. Express
18
,
20251
20262
(
2010
).
37.
J.
Du
,
S.
Liu
,
Z.
Lin
,
J.
Zi
, and
S. T.
Chui
, “
Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding
,”
Phys. Rev. A
83
,
035803
(
2011
).
38.
R. S.
Savelev
,
A. P.
Slobozhanyuk
,
A. E.
Miroshnichenko
,
Y. S.
Kivshar
, and
P. A.
Belov
, “
Subwavelength waveguides composed of dielectric nanoparticles
,”
Phys. Rev. B
89
,
035435
(
2014
).
39.
R. M.
Bakker
,
Y. F.
Yu
,
R.
Paniagua-Domínguez
,
B.
Luk’yanchuk
, and
A. I.
Kuznetsov
, “
Resonant light guiding along a chain of silicon nanoparticles
,”
Nano Lett.
17
,
3458
3464
(
2017
), pMID: 28463510.
40.
R. S.
Savelev
,
D. S.
Filonov
,
P. V.
Kapitanova
,
A. E.
Krasnok
,
A. E.
Miroshnichenko
,
P. A.
Belov
, and
Y. S.
Kivshar
, “
Bending of electromagnetic waves in all-dielectric particle array waveguides
,”
Appl. Phys. Lett.
105
,
181116
(
2014
).
41.
P.
Cheben
,
R.
Halir
,
J.
Schmid
,
H.
Atwater
, and
D.
Smith
, “
Subwavelength integrated photonics
,”
Nature
560
,
565
572
(
2018
).
42.
A.
Evlyukhin
,
C.
Reinhardt
, and
B.
Chichkov
, “
Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation
,”
Phys. Rev. B
23
,
235429
(
2011
).
43.
Computer Simulation Technology (CST), 2017 (www.cst.com).
44.
F.
Le Kien
,
T.
Busch
,
V. G.
Truong
, and
S.
Nic Chormaic
, “
Higher-order modes of vacuum-clad ultrathin optical fibers
,”
Phys. Rev. A
96
,
023835
(
2017
).
45.
S.
Belan
and
S.
Vergeles
, “
Plasmon mode propagation in array of closely spaced metallic cylinders
,”
Opt. Mater. Express
5
,
130
141
(
2015
).
46.
S.-H.
Gong
,
F.
Alpeggiani
,
B.
Sciacca
,
E. C.
Garnett
, and
L.
Kuipers
, “
Nanoscale chiral valley-photon interface through optical spin-orbit coupling
,”
Science
359
,
443
447
(
2018
), see http://science.sciencemag.org/content/359/6374/443.full.pdf.
47.
L.
Sun
,
C.-Y.
Wang
,
A.
Krasnok
,
J.
Choi
,
J.
Shi
,
J. S.
Gomez-Diaz
,
A.
Zepeda
,
S.
Gwo
,
C.-K.
Shih
,
A.
Alù
, and
X.
Li
, “
Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array
,”
Nat. Photon.
13
,
180
184
(
2019
).
48.
D. M.
Toyli
,
C. D.
Weis
,
G. D.
Fuchs
,
T.
Schenkel
, and
D. D.
Awschalom
, “
Chip-scale nanofabrication of single spins and spin arrays in diamond
,”
Nano Lett.
10
,
3168
3172
(
2010
), pMID: 20698632
49.
E.
Togan
,
Y.
Chu
,
A.
Trifonov
,
L.
Jiang
,
J.
Maze
,
L.
Childress
,
M.
Dutt
,
A.
Sørensen
,
P.
Hemmer
,
A.
Zibrov
, and
M.
Lukin
, “
Quantum entanglement between an optical photon and a solid-state spin qubit
,”
Nature
466
,
730
734
(
2010
).
50.
R.
Halir
,
P. J.
Bock
,
P.
Cheben
,
A.
Ortega-Moñux
,
C.
Alonso-Ramos
,
J. H.
Schmid
,
J.
Lapointe
,
D.-X.
Xu
,
J. G.
Wangüemert-Pérez
,
I.
Molina-Fernández
, and
S.
Janz
, “
Waveguide sub-wavelength structures: A review of principles and applications
,”
Laser Photonics Rev.
9
,
25
49
(
2015
), see https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201400083.
51.
K. P.
Nayak
,
F. L.
Kien
,
Y.
Kawai
,
K.
Hakuta
,
K.
Nakajima
,
H. T.
Miyazaki
, and
Y.
Sugimoto
, “
Cavity formation on an optical nanofiber using focused ion beam milling technique
,”
Opt. Express
19
,
14040
14050
(
2011
).
You do not currently have access to this content.