Single and double mode random lasing were observed in a polycrystalline ZnO nanorod array. The double mode random lasing showed mode competition when the mode spacing was 2.3 nm or below. Structurally, X-ray diffraction measurements confirmed the formation of the polycrystalline phase, and photoluminescence measurements revealed a broad visible peak due to point defects, suggesting enhanced oxygen diffusion due to annealing. Our results suggest polycrystalline nanorods prepared by chemical bath deposition as a material system for obtaining random lasing for optoelectronic applications and devices.

1.
H.
Cao
,
J. Y.
Xu
,
S.-H.
Chang
, and
S. T.
Ho
, “
Transition from amplified spontaneous emission to laser action in strongly scattering media
,”
Phys. Rev. E
61
(
2
),
1985
1989
(
2000
).
2.
C.-S.
Wang
,
T.-Y.
Chang
,
T.-Y.
Lin
, and
Y.-F.
Chen
, “
Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors
,”
Sci. Rep.
4
(
1
),
6736
(
2015
).
3.
H.
Fujiwara
,
T.
Suzuki
,
R.
Niyuki
, and
K.
Sasaki
, “
ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis
,”
New J. Phys.
18
(
10
),
103046
(
2016
).
4.
W. Z. W.
Ismail
,
D.
Liu
,
S.
Clement
,
D. W.
Coutts
,
E. M.
Goldys
, and
J. M.
Dawes
, “
Spectral and coherence signatures of threshold in random lasers
,”
J. Opt.
16
(
10
),
105008
(
2014
).
5.
X.
Meng
,
K.
Fujita
,
S.
Murai
, and
K.
Tanaka
, “
Coherent random lasers in weakly scattering polymer films containing silver nanoparticles
,”
Phys. Rev. A
79
(
5
),
053817
(
2009
).
6.
X.
Wu
, et al, “
Random lasing in weakly scattering systems
,”
Phys. Rev. A
74
(
5
),
053812
(
2006
).
7.
R. C.
Polson
and
Z. V.
Vardeny
, “
Organic random lasers in the weak-scattering regime
,”
Phys. Rev. B
71
(
4
),
045205
(
2005
).
8.
M.
Sakai
, et al, “
Random laser action in GaN nanocolumns
,”
Appl. Phys. Lett.
97
(
15
),
151109
(
2010
).
9.
C.
Tolentino Dominguez
,
M. d. A.
Gomes
,
Z. S.
Macedo
,
C. B.
de Araújo
, and
A. S. L.
Gomes
, “
Multi-photon excited coherent random laser emission in ZnO powders
,”
Nanoscale
7
(
1
),
317
323
(
2015
).
10.
K. L.
van der Molen
,
R. W.
Tjerkstra
,
A. P.
Mosk
, and
A.
Lagendijk
, “
Spatial extent of random laser modes
,”
Phys. Rev. Lett.
98
(
14
),
143901
(
2007
).
11.
M.
Noginov
,
J.
Novak
, and
S.
Williams
, “
Modeling of photon density dynamics in random lasers
,”
Phys. Rev. A
70
(
6
),
063810
(
2004
).
12.
R.
Niyuki
,
H.
Fujiwara
,
Y.
Ishikawa
,
N.
Koshizaki
,
T.
Tsuji
, and
K.
Sasaki
, “
Toward single-mode random lasing within a submicrometre-sized spherical ZnO particle film
,”
J. Opt.
18
(
3
),
035202
(
2016
).
13.
H.
Fujiwara
,
R.
Niyuki
,
Y.
Ishikawa
,
N.
Koshizaki
,
T.
Tsuji
, and
K.
Sasaki
, “
Low-threshold and quasi-single-mode random laser within a submicrometer-sized ZnO spherical particle film
,”
Appl. Phys. Lett.
102
(
6
),
061110
(
2013
).
14.
R. G. S.
El-Dardiry
and
A.
Lagendijk
, “
Tuning random lasers by engineered absorption
,”
Appl. Phys. Lett.
98
(
16
),
161106
(
2011
).
15.
M.
Gaio
,
M.
Peruzzo
, and
R.
Sapienza
, “
Tuning random lasing in photonic glasses
,”
Opt. Lett.
40
(
7
),
1611
(
2015
).
16.
N.
Bachelard
,
P.
Gaikwad
,
R.
Backov
,
P.
Sebbah
, and
R. A. L.
Vallée
, “
Disorder as a playground for the coexistence of optical nonlinear effects: Competition between random lasing and stimulated Raman scattering in complex porous materials
,”
ACS Photonics
1
(
11
),
1206
1211
(
2014
).
17.
G.
Assanto
,
S.
Perumbilavil
,
A.
Piccardi
, and
M.
Kauranen
, “
Electro-optic steering of random laser emission in liquid crystals
,”
Photonics Lett. Pol.
10
(
4
),
103
(
2018
).
18.
W.
Maryam
,
N.
Fazrina
,
M. R.
Hashim
,
H. C.
Hsu
, and
M. M.
Halim
, “
Optically driven random lasing in ZnO nanorods prepared by chemical bath deposition
,”
Photonics Nanostruct. Fundam. Appl.
26
,
52
55
(
2017
).
19.
T.-F.
Dai
,
W.-C.
Hsu
, and
H.-C.
Hsu
, “
Improvement of photoluminescence and lasing properties in ZnO submicron spheres by elimination of surface-trapped state
,”
Opt. Express
22
(
22
),
27169
(
2014
).
20.
E.
Muchuweni
,
T. S.
Sathiaraj
, and
H.
Nyakotyo
, “
Synthesis and characterization of zinc oxide thin films for optoelectronic applications
,”
Heliyon
3
(
4
),
e00285
(
2017
).
21.
Y.
Wang
, et al, “
Effect of different annealing atmospheres on the structure and optical properties of ZnO nanoparticles
,”
J. Alloys Compd.
485
(
1–2
),
743
746
(
2009
).
22.
P. K.
Samanta
and
A. K.
Bandyopadhyay
, “
Chemical growth of hexagonal zinc oxide nanorods and their optical properties
,”
Appl. Nanosci.
2
(
2
),
111
117
(
2012
).
23.
S. A.
Bidier
,
M. R.
Hashim
, and
A. M.
Aldiabat
, “
Effect of postannealing treatment on structural and optical properties of ZnO nanorods prepared using chemical bath deposition
,”
J. Electron. Mater.
46
(
7
),
4455
4462
(
2017
).
24.
K.
Vanheusden
,
W. L.
Warren
,
C. H.
Seager
,
D. R.
Tallant
,
J. A.
Voigt
, and
B. E.
Gnade
, “
Mechanisms behind green photoluminescence in ZnO phosphor powders
,”
J. Appl. Phys.
79
(
10
),
7983
7990
(
1996
).
25.
L. L.
Yang
,
Q. X.
Zhao
,
M.
Willander
,
J. H.
Yang
, and
I.
Ivanov
, “
Annealing effects on optical properties of low temperature grown ZnO nanorod arrays
,”
J. Appl. Phys.
105
(
5
),
053503
(
2009
).
26.
O. L.
Muskens
,
S. L.
Diedenhofen
,
B. C.
Kaas
,
R. E.
Algra
,
E. P. A. M.
Bakkers
,
J.
Gómez Rivas
, and
A.
Lagendijk
, “
Large photonic strength of highly tunable resonant nanowire materials
,”
Nano Lett.
9
(
3
),
930
934
(
2009
).
27.
F. J. P.
Schuurmans
, “
Strongly photonic macroporous gallium phosphide networks
,”
Science
284
(
5411
),
141
143
(
1999
).
28.
J.
Gómez Rivas
,
R.
Sprik
,
A.
Lagendijk
,
L. D.
Noordam
, and
C. W.
Rella
, “
Static and dynamic transport of light close to the Anderson localization transition
,”
Phys. Rev. E
63
(
4
),
046613
(
2001
).
29.
D. J.
Durian
, “
Influence of boundary reflection and refraction on diffusive photon transport
,”
Phys. Rev. E
50
(
2
),
857
866
(
1994
).
30.
J. X.
Zhu
,
D. J.
Pine
, and
D. A.
Weitz
, “
Internal reflection of diffusive light in random media
,”
Phys. Rev. A
44
(
6
),
3948
3959
(
1991
).
31.
K. L.
van der Molen
,
A. P.
Mosk
, and
A.
Lagendijk
, “
Quantitative analysis of several random lasers
,”
Opt. Commun.
278
(
1
),
110
113
(
2007
).
32.
H.-C.
Hsu
,
C.-Y.
Wu
, and
W.-F.
Hsieh
, “
Stimulated emission and lasing of random-growth oriented ZnO nanowires
,”
J. Appl. Phys.
97
(
6
),
064315
(
2005
).
33.
G.
Grinblat
,
Y.
Li
,
M. P.
Nielsen
,
R. F.
Oulton
, and
S. A.
Maier
, “
Degenerate four-wave mixing in a multiresonant germanium nanodisk
,”
ACS Photonics
4
(
9
),
2144
2149
(
2017
).
34.
C.-H.
Lu
,
T.-Y.
Chao
,
Y.-F.
Chiu
,
S.-Y.
Tseng
, and
H.-C.
Hsu
, “
Enhanced optical confinement and lasing characteristics of individual urchin-like ZnO microstructures prepared by oxidation of metallic Zn
,”
Nanoscale Res. Lett.
9
(
1
),
178
(
2014
).
35.
O.
Malik
,
K. G.
Makris
, and
H. E.
Türeci
, “
Spectral method for efficient computation of time-dependent phenomena in complex lasers
,”
Phys. Rev. A
92
(
6
),
063829
(
2015
).
36.
J.
Fallert
,
R. J. B.
Dietz
,
J.
Sartor
,
D.
Schneider
,
C.
Klingshirn
, and
H.
Kalt
, “
Co-existence of strongly and weakly localized random laser modes
,”
Nat. Photonics
3
(
5
),
279
282
(
2009
).
37.
S.
Caixeiro
,
M.
Gaio
,
B.
Marelli
,
F. G.
Omenetto
, and
R.
Sapienza
, “
Silk-based biocompatible random lasing
,”
Adv. Opt. Mater.
4
(
7
),
998
1003
(
2016
).
You do not currently have access to this content.