The electron and hole drift mobilities of organic semiconductor layers, localized tail state distributions, and bimolecular recombination constants in working polymer light-emitting diodes (PLEDs) are determined simultaneously using impedance spectroscopy (IS). The organic light-emitting layers of these PLEDs are composed of poly(9,9-dioctylfluorene-alt-benzothiadiazole). Electron and hole transit time effects are observed in the capacitance-frequency characteristics of the PLEDs, and their drift mobilities are determined over wide temperature and electric field ranges. The drift mobilities exhibit thermally activated behavior, and the localized tail state distributions from the conduction band and valence band mobility edges are then determined from analysis of the electric field dependences of the activation energies. The bimolecular recombination constants are determined from the inductive response of the impedance-frequency characteristics. The IS technique is also applicable to degradation analysis of the PLEDs; changes in the mobility balance, the localized tail state distributions, and the bimolecular recombination constant caused by aging are all shown.

1.
R. A.
Klenkler
,
H.
Aziz
,
A.
Tran
,
Z. D.
Popovic
, and
G.
Xu
,
Org. Electron.
9
,
285
(
2008
).
2.
J. C.
Scott
,
S.
Karg
, and
S. A.
Carter
,
J. Appl. Phys.
82
,
1454
(
1997
).
3.
G. G.
Malliaras
and
J. C.
Scott
,
J. Appl. Phys.
83
,
5399
(
1998
).
4.
P.
Langevin
,
Ann. Chim. Phys.
28
,
433
(
1903
).
5.
G.
Lakhwani
,
A.
Rao
, and
R. H.
Friend
,
Annu. Rev. Phys. Chem.
65
,
557
(
2014
).
6.
E.
Lebedev
,
T.
Dittrich
,
V.
Petrova-Koch
,
S.
Karg
, and
W.
Brütting
,
Appl. Phys. Lett.
71
,
2686
(
1997
).
7.
M.
Redecker
,
D. D. C.
Bradley
,
M.
Inbasekaran
, and
E. P.
Woo
,
Appl. Phys. Lett.
74
,
1400
(
1999
).
8.
S. C.
Tse
,
S. W.
Tsang
, and
S. K.
So
,
J. Appl. Phys.
100
,
063708
(
2006
).
9.
A.
Many
and
G.
Rakavy
,
Phys. Rev.
126
,
1980
(
1962
).
10.
J. G.
Simmons
,
G. W.
Taylor
, and
M. C.
Tam
,
Phys. Rev. B
7
,
3714
(
1973
).
11.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
12.
H.
Naito
,
J.
Ding
, and
M.
Okuda
,
Appl. Phys. Lett.
64
,
1830
(
1994
).
13.
J.
Bisquert
,
A.
Zaban
,
M.
Greenshtein
, and
I.
Mora-Seró
,
J. Am. Chem. Soc.
126
,
13550
(
2004
).
14.
G.
Juška
,
K.
Arlauskas
,
G.
Sliaužys
,
A.
Pivrikas
,
A. J.
Mozer
,
N. S.
Sariciftci
,
M.
Scharber
, and
R.
Österbacka
,
Appl. Phys. Lett.
87
,
222110
(
2005
).
15.
A.
Armin
,
M.
Velusamy
,
P. L.
Burn
,
P.
Meredith
, and
A.
Pivrikas
,
Appl. Phys. Lett.
101
,
083306
(
2012
).
16.
T.
Okachi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Jpn. J. Appl. Phys.
47
,
8965
(
2008
).
17.
T.
Okachi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Thin Solid Films
517
,
1331
(
2008
).
18.
T.
Okachi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Appl. Phys. Lett.
94
,
043301
(
2009
).
19.
K.
Takagi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Appl. Phys. Lett.
108
,
053305
(
2015
).
20.
I. H.
Campbell
,
D. L.
Smith
, and
J. P.
Ferraris
,
Appl. Phys. Lett.
66
,
3030
(
1995
).
21.
A. J.
Campbell
,
D. D. C.
Bradley
, and
D. G.
Lidzey
,
J. Appl. Phys.
82
,
6326
(
1997
).
22.
L. S. C.
Pingree
,
B. J.
Scott
,
M. T.
Russell
,
T. J.
Marks
, and
M. C.
Hersam
,
Appl. Phys. Lett.
86
,
073509
(
2005
).
23.
S.
Nowy
,
W.
Ren
,
A.
Elschner
,
W.
Lovenich
, and
W.
Brutting
,
J. Appl. Phys.
107
,
54501
(
2010
).
24.
M.
Takata
,
K.
Takagi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
J. Nanosci. Nanotechnol.
16
,
3322
(
2016
).
25.
M.
Takada
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
,
Org. Electron.
50
,
290
(
2017
).
26.
M.
Schmeits
,
J. Appl. Phys.
101
,
084508
(
2007
).
27.
H. C. F.
Martens
,
J. N.
Huiberts
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
77
,
1852
(
2000
).
28.
S.
Ishihara
,
H.
Hase
,
T.
Okachi
, and
H.
Naito
,
J. Appl. Phys.
110
,
036104
(
2011
).
29.
K.
Morii
,
M.
Ishida
,
T.
Takashima
,
T.
Shimoda
,
Q.
Wang
,
M. K.
Nazeeruddin
, and
M.
Grätzel
,
Appl. Phys. Lett.
89
,
183510
(
2006
).
30.
M.
Sessolo
and
H. J.
Bolink
,
Adv. Mater.
23
,
1829
(
2011
).
31.
D.
Kabra
,
L. P.
Lu
,
M. H.
Song
,
H. J.
Snaith
, and
R. H.
Friend
,
Adv. Mater.
22
,
3194
(
2010
).
32.
J.
Sun Park
,
B.
Ram Lee
,
E.
Jeong
,
H. J.
Lee
,
J.
Min Lee
,
J. S.
Kim
,
J.
Young Kim
,
H.
Young Woo
,
S.
Ouk Kim
, and
M.
Hoon Song
,
Appl. Phys. Lett.
99
,
163305
(
2011
).
33.
K.
Morii
,
T.
Kawase
, and
S.
Inoue
,
Appl. Phys. Lett.
92
,
213304
(
2008
).
34.
R.
Kassing
,
Phys. Status Solidi
28
,
107
(
1975
).
35.
H. C. F.
Martens
,
H. B.
Brom
, and
P. W. M.
Blom
,
Phys. Rev. B
60
,
R8489
(
1999
).
36.
A. J.
Campbell
,
D. D. C.
Bradley
, and
H.
Antoniadis
,
Appl. Phys. Lett.
79
,
2133
(
2001
).
37.
L.
Chua
,
J.
Zaumseil
,
J.
Chang
,
E. C.-W.
Ou
,
P. K.-H.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
,
Nature
434
,
194
(
2005
).
38.
Y.
Zhang
and
P. W. M.
Blom
,
Appl. Phys. Lett.
98
,
143504
(
2011
).
39.
T.
Tiedje
and
A.
Rose
,
Solid State Commun.
37
,
49
(
1981
).
40.
F. W.
Schmidlin
,
Phys. Rev. B
16
,
2362
(
1977
).
41.
J. M.
Marshall
,
J.
Berkin
, and
C.
Main
,
Philos. Mag. B
56
,
641
(
1987
).
42.
C.
Longeaud
,
J. P.
Kleider
,
P.
Kaminski
,
R.
Kozlowski
,
M.
Pawlowski
, and
J.
Cwirko
,
Semicond. Sci. Technol.
14
,
747
(
1999
).
43.
S.
Reynolds
,
C.
Main
,
D. P.
Webb
, and
M. J.
Rose
,
Philos. Mag. B
80
,
547
(
2000
).
44.
M.
Takada
,
T.
Mayumi
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
, “Determination of bimolecular recombination constants in organic double-injection devices using impedance spectroscopy,” Appl. Phys. Lett. (to be published); (014912APL) e-print arXiv:1811.03281.
45.
J.
Gorenflot
,
M. C.
Heiber
,
A.
Baumann
,
J.
Lorrmann
,
M.
Gunz
,
V.
Dyakonov
, and
C.
Deibel
,
J. Appl. Phys.
115
,
144502
(
2014
).
46.
G. J.
Adriaenssens
and
V. I.
Arkhipov
,
Solid State Commun.
103
,
541
(
1997
).
47.
C.
Deibel
,
A.
Baumann
,
A.
Wagenpfahl
, and
V.
Dyakonov
,
Synth. Met.
159
,
2345
(
2009
).
48.
U.
Albrecht
and
H.
Bässler
,
Phys. Status Solidi B
191
,
455
(
1995
).

Supplementary Material

You do not currently have access to this content.