X-ray diffraction and bright-field transmission electron microscopy are used to investigate the distribution and density of {111}-type stacking faults (SFs) present in a heteroepitaxial zincblende GaN epilayer with high phase purity, grown on a 3C-SiC/Si (001) substrate by metalorganic vapour-phase epitaxy. It is found that the 4° miscut towards the [110] direction of the substrate, which prevents the formation of undesirable antiphase domains, has a profound effect on the relative densities of SFs occurring on the different {111} planes. The two orientations of SFs in the [−110] zone, where the SF inclination angle with the GaN/SiC interface is altered by the 4° miscut, show a significant difference in density, with the steeper (111) SFs being more numerous than the shallower (−1−11) SFs by a factor of ∼5 at 380 nm from the GaN/SiC interface. In contrast, the two orientations of SFs in the [110] zone, which is unaffected by the miscut, have densities comparable with the (−1−11) SFs in the [−110] zone. A simple model, simulating the propagation and annihilation of SFs in zincblende GaN epilayers, reproduces the presence of local SF bunches observed in TEM data. The model also verifies that a difference in the starting density at the GaN/SiC interface of the two orientations of intersecting {111} SFs in the same zone reduces the efficiency of SF annihilation. Hence, (111) SFs have a higher density compared with SFs on the other three {111} planes, due to their preferential formation at the GaN/SiC interface caused by the miscut.

1.
A.
Trampert
,
O.
Brandt
, and
K. H.
Ploog
,
Angew. Chem. Int. Ed. Engl.
36
,
2111
(
1997
).
2.
D.
Chandrasekhar
,
D. J.
Smith
,
S.
Strite
,
M. E.
Lin
, and
H.
Morkoç
,
J. Cryst. Growth
152
,
135
(
1995
).
3.
D. J.
As
,
R.
Kemper
,
C.
Mietze
,
T.
Wecker
,
J. K. N.
Lindner
,
P.
Veit
,
A.
Dempewolf
,
F.
Bertram
, and
J.
Christen
,
Mater. Res. Soc. Symp. Proc.
1736
, Mrsf14-1736-t03-03 (
2014
).
4.
E.
Martinez-Guerrero
,
E.
Bellet-Amalric
,
L.
Martinet
,
G.
Feuillet
,
B.
Daudin
,
H.
Mariette
,
P.
Holliger
,
C.
Dubois
,
C.
Bru-Chevallier
,
P. A.
Nze
,
T.
Chassagne
,
G.
Ferro
, and
Y.
Monteil
,
J. Appl. Phys.
91
,
4983
(
2002
).
5.
R. M.
Kemper
,
M.
Weinl
,
C.
Mietze
,
M.
Häberlen
,
T.
Schupp
,
E.
Tschumak
,
J. K. N.
Lindner
,
K.
Lischka
, and
D. J.
As
,
J. Cryst. Growth
323
,
84
(
2011
).
6.
R. M.
Kemper
,
P.
Veit
,
C.
Mietze
,
A.
Dempewolf
,
T.
Wecker
,
F.
Bertram
,
J.
Christen
,
J. K. N.
Lindner
, and
D. J.
As
,
Phys. Status Solidi C
12
,
469
(
2015
).
7.
S. A.
Church
,
S.
Hammersley
,
P. W.
Mitchell
,
M. J.
Kappers
,
S. L.
Sahonta
,
M.
Frentrup
,
D.
Nilsson
,
P. J.
Ward
,
L. J.
Shaw
,
D. J.
Wallis
,
C. J.
Humphreys
,
R. A.
Oliver
,
D. J.
Binks
, and
P.
Dawson
,
Phys. Status Solidi
254
,
1600733
(
2017
).
8.
A.
Trampert
,
O.
Brandt
,
H.
Yang
, and
K. H.
Ploog
,
Appl. Phys. Lett.
70
,
583
(
1997
).
9.
L. Y.
Lee
,
M.
Frentrup
,
M. J.
Kappers
,
R. A.
Oliver
,
C. J.
Humphreys
, and
D. J.
Wallis
,
J. Appl. Phys.
124
,
105302
(
2018
).
10.
M.
Barchuk
,
V.
Holý
,
D.
Kriegner
,
J.
Stangl
,
S.
Schwaiger
, and
F.
Scholz
,
Phys. Rev. B
84
,
1
(
2011
).
11.
S. A.
Church
,
S.
Hammersley
,
P. W.
Mitchell
,
M. J.
Kappers
,
L. Y.
Lee
,
F.
Massabuau
,
S. L.
Sahonta
,
M.
Frentrup
,
L. J.
Shaw
,
D. J.
Wallis
,
C. J.
Humphreys
,
R. A.
Oliver
,
D. J.
Binks
, and
P.
Dawson
,
J. Appl. Phys.
123
,
185705
(
2018
).
12.
D.
Hull
and
D. J.
Bacon
, in
Introduction to Dislocations
, 5th ed. (
Butterworth-Heinemann
,
2011
), pp.
85
107
.
13.
A. F.
Wright
,
J. Appl. Phys.
82
,
5259
(
1997
).
You do not currently have access to this content.