Magnetic nanoparticle-mediated hyperthermia holds great promise as a treatment for cancer. The key measure used for characterizing the heating efficiency of nanoparticles in this context is the specific loss power, which may be derived from the magnetic hysteresis loop area. An intrinsic property of magnetic nanoparticles that influences specific loss power is magnetic anisotropy, which is difficult to estimate because of its complicated nature. This work presents a simple method for the theoretical estimation of magnetic anisotropy in ferromagnetic magnetite nanoparticles of 40 nm diameter. We conduct numerical calculations of hysteresis loops, employing a Monte Carlo technique for a typical anisotropy range of 2 to 11 kJ/m3. To assess the validity of our simulations and to estimate the optimum anisotropy for our magnetic nanoparticles, we compare numerically estimated loops with an experimental one. Using the finite element method, we perform heat transfer simulations to calculate temporal temperature distributions in an aqueous dispersion of magnetic nanoparticles for a fixed range of anisotropy values. Simulated heating curves are compared with experimental ones to verify magnetic nanoparticle anisotropy, which coincides with the one obtained from the above Monte Carlo simulations and is equal to 9 kJ/m3. Therefore, in this study, we propose a rigorous quantification of the anisotropy of ferromagnetic nanoparticles both magnetically and calorimetrically through hysteresis loop estimation and heat transfer simulations, respectively, so that their specific loss power can be accurately determined and used for treatment planning in clinical practice.

1.
G.
Herzer
,
M.
Vazquez
,
M.
Knobel
,
A.
Zhukov
,
T.
Reininger
,
H. A.
Davies
, and
J. L.
Sanchez
,
JMMM
294
,
252
266
(
2005
).
2.
A. P.
Guimarães
,
Principles of Nanomagnetism
(
Springer
,
2009
), pp.
1
20
.
3.
C. S. S. R.
Kumar
and
F.
Mohammad
,
Adv. Drug Deliv. Rev.
63
,
789
808
(
2011
).
4.
R.
Di Corato
,
A.
Espinosa
,
L.
Lartigue
,
M.
Tharaud
,
S.
Chat
,
T.
Pellegrino
,
C.
Ménager
,
F.
Gazeau
, and
C.
Wilhelm
,
Biomaterials
35
,
6400
6411
(
2014
).
5.
K.
Simeonidis
,
C.
Martinez-Boubeta
,
L.
Balcells
,
C.
Monty
,
G.
Stavropoulos
,
M.
Mitrakas
,
A.
Matsakidou
,
G.
Vourlias
, and
M.
Angelakeris
,
J. Appl. Phys.
114
,
103909
(
2013
).
6.
A.
Figuerola
,
R.
Di Corato
,
L.
Manna
, and
T.
Pellegrino
,
J. Biochem. Pharmacol. Res.
62
,
126
143
(
2010
).
7.
I.
Conde-Leborán
,
D.
Serantes
, and
D.
Baldomir
,
J. Magn. Magn. Mater.
380
,
321
324
(
2015
).
8.
B.
Pimentel
,
R. J.
Caraballo-Vivas
,
N. R.
Checca
,
V. I.
Zverev
,
R. T.
Salakhova
,
L. A.
Makarova
,
A. P.
Pyatakov
,
N. S.
Perov
,
A. M.
Tishin
,
A. A.
Shtil
,
A. L.
Rossi
, and
M. S.
Reis
,
J. Solid State Chem.
260
,
34
38
(
2018
).
9.
K. D.
Usadel
,
Phys. Rev. B
95
,
104430
(
2017
).
10.
Q. A.
Pankhurst
,
N. T. K.
Thanh
,
S. K.
Jones
, and
J.
Dobson
,
J. Phys. D Appl. Phys.
42
,
224001
(
2009
).
11.
A.
Chalkidou
,
K.
Simeonidis
,
M.
Angelakeris
,
T.
Samaras
,
C.
Martinez-Boubeta
,
L.
Balcells
,
K.
Papazisis
,
C.
Dendrinou-Samara
, and
O.
Kalogirou
,
J. Magn. Magn. Mater.
323
,
775
780
(
2011
).
12.
S.
Dutz
and
R.
Hergt
,
Nanotechnology
25
,
452001
(
2014
).
13.
A. M.
Tishin
,
A. A.
Shtil
,
A. P.
Pyatakov
, and
V. I.
Zverev
,
Recent Pat. Anticancer Drug Discov.
11
,
360
375
(
2016
).
14.
M.
Angelakeris
,
Biochim. Biophys. Acta Gen. Subj.
1861
,
1642
1651
(
2017
).
15.
I. M.
Obaidat
,
B.
Issa
, and
Y.
Haik
,
Nanomaterials
5
(
1
),
63
89
(
2015
).
16.
M.
Latorre
and
C.
Rinaldi
,
P. R. Health Sci. J.
28
,
227
238
(
2009
).
17.
J.
Van der Zee
,
Ann. Oncol.
13
,
1173
1184
(
2002
).
18.
N. T. K.
Thanh
Magnetic Nanoparticles From Fabrication to Clinical Application
(
CRC Press, Taylor & Francis Group
,
FL
,
2012
).
19.
R.
Hergt
,
S.
Dutz
,
R.
Müllerand
, and
M.
Zeisberger
,
J. Phys. Condens. Matter
18
,
S2919
S2934
(
2006
).
20.
R. E. E.
Rosensweig
,
J. Magn. Magn. Mater.
252
,
370
374
(
2002
).
21.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
,
J. Appl. Phys.
109
,
083921
(
2011
).
22.
B.
Mehdaoui
,
R. P.
Tan
,
A.
Meffre
,
J.
Carrey
,
S.
Lachaize
,
B.
Chaudret
, and
M.
Respaud
,
Phys. Rev. B Condens. Matter Mater. Phys.
102
,
1
10
(
2013
).
23.
N.
Usov
and
Y. B.
Grebenshchikov
,
Magn. Nanopart.
106
,
303
(
2009
).
24.
E. A.
Perigo
,
G.
Hemery
,
O.
Sandre
,
D.
Ortega
,
E.
Garaio
,
F.
Plazaola
, and
F. J.
Teran
,
Appl. Phys. Rev.
2
,
041302
(
2015
).
25.
S.
He
,
H.
Zhang
,
Y.
Liu
,
F.
Sun
,
X.
Yu
,
X.
Li
,
L.
Zhang
,
L.
Wang
,
K.
Mao
,
G.
Wang
,
Y.
Lin
,
Z.
Han
,
R.
Sabirianov
, and
H.
Zeng
,
Small
14
,
1800135
(
2018
).
26.
U. M.
Engelmanna
,
C.
Shasha
,
E.
Teeman
,
I.
Slabu
, and
K. M.
Krishnan
,
JMMM
471
,
450
456
(
2018
).
27.
G. F.
Goya
,
T. S.
Berquo
,
F. C.
Fonseca
, and
M. P.
Morales
,
J. Appl. Phys.
94
,
3520
3528
(
2003
).
28.
A.
Satoh
,
R. W.
Chantrell
,
S.
Kamiyama
, and
G. N.
Coverdale
,
J. Colloid Interface Sci.
178
,
620
627
(
1996
).
29.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
30.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
31.
R. W.
Chantrell
,
A.
Bradbury
,
J.
Popplewell
, and
S. W.
Charles
,
J. Appl. Phys.
53
,
2742
(
1982
).
32.
A. F.
Bakuzis
,
L. C.
Branquinho
,
L. L.
e Castro
,
M. T.
De Amaral e Eloi
, and
R.
Miotto
,
Adv. Colloid Interface Sci.
191–192
,
1
21
(
2013
).
33.
K.
Binder
and
D. W.
Heermann
,
Science
2
,
487
(
2010
).
34.
D.
Serantes
and
D.
Baldomir
,
Surf. Sci. J.
4
,
71
(
2012
).
35.
E. C.
Stoner
and
E. P.
Wohlfarth
,
Philos. Trans. R. Soc. Lond. Ser. A
240
,
599
(
1948
).
36.
A.
Satoh
,
J. Colloid Interface Sci.
150
,
461
472
(
1992
).
37.
I.
Andreu
and
E.
Natividad
,
Int. J. Hyperthermia
29
,
739
751
(
2013
).
38.
D.
Ortega
and
Q. A.
Pankhurst
,
Nanoscience
1
,
88
(
2013
).
39.
Comsol Multiphysics Tutorial, AC/DC Model & General Heat Model, version 3.5a.
40.
See http://www.magtechina.com/en/product/show_194.html for SPG-06B-III HF induction heater technical parameters.
41.
H.
Pfeiffer
,
Phys. Status Solidi A
120
,
233
(
1990
).
42.
J. J.
Lu
,
H. L.
Huang
, and
I.
Klik
,
J. Appl. Phys.
76
,
1726
(
1994
).
43.
M.
Respaud
,
J. Appl. Phys.
86
,
556
(
1999
).
44.
N. A.
Usov
and
Y. B.
Grebenshchikov
,
J. Appl. Phys.
106
,
023917
(
2009
).
45.
Y. L.
Raikher
and
M. I.
Shliomis
, “
Relaxation phenomena in condensed matter
,” in
Advances in Chemical Physics Series
, edited by
W.
Coffey
(
Wiley
,
New York
,
1994
), Vol. LXXXVII, pp.
596
751
.
46.
E.
Garaio
,
O.
Sandre
,
J. M.
Collantes
,
J. A.
Garcia
,
S.
Mornet
, and
F.
Plazaola
,
Nanotechnology
26
,
015704
(
2015
).
47.
E.
Myrovali
,
N.
Maniotis
,
A.
Makridis
,
A.
Terzopoulou
,
V.
Ntomprougkidis
,
K.
Simeonidis
,
D.
Sakellari
,
O.
Kalogirou
,
T.
Samaras
,
R.
Salikhov
, and
M.
Spasova
,
Sci. Rep.
6
,
37934
(
2016
).
48.
R. C.
O’Handley
, in
Modern Magnetic Materials: Principles and Applications
(
Wiley
,
New York
,
2000
).
49.
M.
Andrés Vergés
,
R.
Costo
,
A. G.
Roca
,
J. F.
Marco
,
G. F.
Goya
,
C. J.
Serna
, and
M. P.
Morales
,
J. Phys. D Appl. Phys.
41
,
134003
(
2008
).
50.
D.
Kechrakos
and
K. N.
Trohidou
,
Phys. Rev. B
58
,
12169
(
1998
).
51.
D.
Serantes
,
D.
Baldomir
,
C.
Martinez-Boubeta
,
K.
Simeonidis
,
M.
Angelakeris
,
E.
Natividad
,
M.
Castro
,
A.
Mediano
,
D.-X.
Chen
,
A.
Sanchez
,
L. I.
Balcells
, and
B.
Martínez
,
J. Appl. Phys.
108
,
073918
(
2010
).
52.
Z.
Nemati
,
J.
Alonso
,
I.
Rodrigo
,
R.
Das
,
E.
Garaio
,
J. Á.
García
,
I.
Orue
,
M. H.
Phan
, and
H.
Srikanth
,
J. Phys. Chem. C
122
,
2367
2381
(
2018
).
53.
I.
Morales
,
R.
Costo
,
N.
Mille
,
G. B.
Da Silva
,
J.
Carrey
,
A.
Hernando
, and
P.
De la Presa
,
Nanomaterials
8
,
970
(
2018
).

Supplementary Material

You do not currently have access to this content.