Particle aggregation in nanofluids is a common phenomenon. Some studies indicated that aggregation can increase the thermal conductivity of nanofluids due to the formation of an “efficient heat channel,” while the underlying mechanism is still unclear. In this study, an effective medium model considering phonon scattering is applied to explore the effect of particle aggregation on nanofluid thermal conductivity. The aggregation is simulated by a diffusion-limit-cluster-aggregation model, where the effects of nanoparticle size, concentration, and number in a cluster on the aggregation structure are studied. Results show that nanoparticle aggregation can dramatically increase the thermal conductivity of nanofluids, and aggregation puts up stronger effects for the case of smaller nanoparticles and lower concentrations. The main mechanism is that the aggregation raises the phonon MFP in the solid phase, which further results in the thermal conductivity enhancement of nanoparticles.

1.
S. E.
Ghasemi
,
A. A.
Ranjbar
, and
M. J.
Hosseini
,
Mech. Res. Commun.
84
,
85
89
(
2017
).
2.
A. M.
Elbreki
,
M. A.
Alghoul
,
K.
Sopian
, and
T.
Hussein
,
Renew. Sust. Energ. Rev.
69
,
961
1017
(
2017
).
3.
M. U.
Sajid
and
H. M.
Ali
,
Int. J. Heat Mass Trans.
126
,
211
234
(
2018
).
4.
M. M.
Tawfik
,
Renew. Sust. Energ. Rev.
75
,
1239
1253
(
2017
).
5.
D. R.
Rajendran
,
E. G.
Sundaram
, and
P.
Jawahar
,
J. Therm. Sci.
26
,
263
272
(
2017
).
6.
A.
Benabderrahmane
,
M.
Aminallah
,
S.
Laouedj
,
A.
Benazza
, and
J. P.
Solano
,
J. Therm. Sci.
25
,
410
417
(
2016
).
7.
Gohar
,
G.
Taza
,
K.
Waris
,
S.
Muhammad
,
A. K.
Muhammad
, and
B.
Ebenezer
,
J. Therm. Sci.
(published online 2018).
8.
D.
Song
,
H.
Jin
,
D.
Jing
, and
X.
Wang
,
J. Phys. D Appl. Phys.
51
,
105301
(
2018
).
9.
C.
Wu
,
T. J.
Cho
,
J.
Xu
,
D.
Lee
,
B.
Yang
, and
M. R.
Zachariah
,
Phys. Rev. E
81
,
011406
(
2010
).
10.
D.
Song
,
Y.
Yang
, and
D.
Jing
,
Int. J. Heat Mass Trans.
112
,
61
71
(
2017
).
11.
J.
Cai
,
X.
Hu
,
B.
Xiao
,
Y.
Zhou
, and
W.
Wei
,
Int. J. Heat Mass Trans.
105
,
623
637
(
2017
).
12.
R.
Prasher
,
P.
Bhattacharya
, and
P. E.
Phelan
,
Phys. Rev. Lett.
94
,
025901
(
2005
).
13.
Y. M.
Xuan
,
Q.
Li
, and
W. F.
Hu
,
AICHE J.
49
,
1038
1043
(
2003
).
14.
T.
Cosgrove
,
Colloid Science: Principles, Methods and Applications
(
Blackwell Publications
,
Oxford
,
2005
).
15.
D. J.
Shaw
,
Introduction to Colloid and Surface Chemistry
, 3rd ed. (
Butterworths
,
London
,
1980
).
16.
F.
Iacobazzi
,
M.
Milanese
,
G.
Colangelo
,
M.
Lomascolo
, and
A.
de Risi
,
Energy
116
,
786
794
(
2016
).
17.
M.
Hemmat Esfe
,
A.
Karimipour
,
W.
Yan
,
M.
Akbari
,
M. R.
Safaei
, and
M.
Dahari
,
Int. J. Heat Mass Trans.
88
,
728
734
(
2015
).
18.
R.
Ellahi
,
M.
Hassan
, and
A.
Zeeshan
,
Int. J. Heat Mass Trans.
81
,
449
456
(
2015
).
19.
Z.
Liang
and
H. L.
Tsai
,
Phys. Rev. E
83
,
041602
(
2011
).
20.
B. N.
Reinecke
,
J. W.
Shan
,
K. K.
Suabedissen
, and
A. S.
Cherkasova
,
J. Appl. Phys.
104
,
023507
(
2008
).
21.
E. V.
Timofeeva
,
A. N.
Gavrilov
,
J. M.
McCloskey
,
Y. V.
Tolmachev
,
S.
Sprunt
,
L. M.
Lopatina
, and
J. V.
Selinger
,
Phys. Rev. E
76
,
061203
(
2007
).
22.
R.
Prasher
,
W.
Evans
,
P.
Meakin
,
J.
Fish
,
P.
Phelan
, and
P.
Keblinski
,
Appl. Phys. Lett.
89
,
143119
(
2006
).
23.
J. W.
Gao
,
R. T.
Zheng
,
H.
Ohtani
,
D. S.
Zhu
, and
G.
Chen
,
Nano Lett.
9
,
4128
4132
(
2009
).
24.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
668
(
1989
).
25.
W.
Evans
,
R.
Prasher
,
J.
Fish
,
P.
Meakin
,
P.
Phelan
, and
P.
Keblinski
,
Int. J. Heat Mass Trans.
51
,
1431
1438
(
2008
).
26.
W.
Yu
,
H.
Xie
,
X.
Wang
, and
X.
Wang
,
Phys. Lett. A
375
,
1323
1328
(
2011
).
27.
M.
Du
and
G. H.
Tang
,
Sol. Energy
122
,
864
872
(
2015
).
28.
M.
Lattuada
,
H.
Wu
, and
M.
Morbidelli
,
J. Colloid Interf. Sci.
268
,
106
120
(
2003
).
29.
J. C.
Gimel
,
T.
Nicolai
, and
D.
Durand
,
J. Solgel Sci. Technol.
15
,
129
136
(
1999
).
30.
D.
Bolmatov
,
V. V.
Brazhkin
, and
K.
Trachenko
,
Sci. Rep.
2
,
421
(
2012
).
31.
N. V. T.
Sederberg
,
Thermal Conductivity of Gases and Liquids
(
MIT Press
,
Cambridge
,
1965
).
32.
Q. F.
Lei
,
Y. C.
Hou
, and
R. S.
Lin
,
Chem. Eng. Sci.
52
,
1243
1251
(
1997
).
33.
K.
Ogiwara
,
Y.
Arai
, and
S.
Saito
,
J. Chem. Eng. Jpn.
18
,
273
277
(
1985
).
34.
R. M.
Drake
and
E. R. G.
Eckert
,
Analysis of Heat and Mass Transfer
(
McGraw-Hill
,
New York
,
1971
).
35.
H.
Sagara
,
Y.
Arai
, and
S.
Saito
,
J. Chem. Eng. Jpn.
8
,
93
97
(
1975
).
36.
D.
Song
,
D.
Jing
,
W.
Ma
, and
X.
Zhang
,
Appl. Phys. Lett.
113
,
223104
(
2018
).
37.
R.
Prasher
,
P. E.
Phelan
, and
P.
Bhattacharya
,
Nano Lett.
6
,
1529
1534
(
2006
).
38.
C.
Kittel
,
Introduction to Solid State Physics
, 5th ed. (
Wiley
,
New York
,
1976
).
39.
M. Y.
Lin
,
H. M.
Lindsay
,
D. A.
Weitz
,
R.
Klein
,
R. C.
Ball
, and
P.
Meakin
,
J. Phys. Condens. Matter
2
,
3093
3113
(
1990
).
40.
L.
Ehrl
,
M.
Soos
, and
M.
Lattuada
,
J. Phys. Chem. B
113
,
10587
10599
(
2009
).
41.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
,
073105
(
2007
).
42.
Q.
Hao
,
H.
Zhao
,
Y.
Xiao
, and
D.
Xu
,
J. Appl. Phys.
123
,
014303
(
2018
).
43.
D. K.
Ferry
,
Semiconductor Transport
(
Taylor & Francis
,
London
,
2000
).
44.
D.
Song
,
H.
Jin
,
J.
Jin
, and
D.
Jing
,
J. Phys. D Appl. Phys.
49
,
425303
(
2016
).

Supplementary Material

You do not currently have access to this content.