By forming anatase TiO2 inverse opals by infiltration of an opal photonic crystal, we demonstrate that the optical response and angle-resolved blue-shift of the band-gap of the inverse opal structure are defined by a particular three-dimensional structure of the infilled voids. The optical structure of TiO2 inverse opals usually displays significant deviation from its physical structure and from the theoretically predicted position of the photonic band-gap. Following rigorous structural characterization of the parent opal template and TiO2 inverse opals, alternative explanations for the signature of optical transmission through inverse opals are proposed. These approaches posit that, for light-matter interaction, an inverse opal is not precisely the inverse of an opal. Accurate parameters for the structure and material properties can be obtained by invoking a Bragg FCC selection rule-forbidden (-211) plane, which is not a realistic model for diffraction in the IO. Alternatively, by assuming optical interactions with just the periodic arrangement of tetrahedral filled interstitial sites in the structure of the inverse opal, a complete reconciliation with the spectral blue-shift with the angle, photonic band gap, and material parameters is obtained when a reduced unit cell is defined based on interstitial void filling. The analysis suggests a reduced interplanar spacing (d = 1/3D, for pore diameter D), based on the actual structure of an inverse opal in general, rather than a definition based on the inverse of an FCC packed opal. This approach provides an accurate and general description for predicting the spectral response and material parameters of ordered inverse opal photonic crystal materials.

1.
E.
Yablonovitch
, “
Inhibited spontaneous emission in solid-state physics and electronics
,”
Phys. Rev. Lett.
58
,
2059
(
1987
).
2.
S.
John
, “
Strong localization of photons in certain disordered dielectric superlattices
,”
Phys. Rev. Lett.
58
,
2486
(
1987
).
3.
C.
O'Dwyer
, “
Color-coded batteries: Electro-photonic inverse opal materials for enhanced electrochemical energy storage and optically encoded diagnostics
,”
Adv. Mater.
28
,
5681
(
2016
).
4.
J. F.
Galisteo-López
,
E.
Palacios-Lidón
,
E.
Castillo-Martínez
, and
C.
López
, “
Optical study of the pseudogap in thickness and orientation controlled artificial opals
,”
Phys. Rev. B
68
,
115109
(
2003
).
5.
K.
Busch
and
S.
John
, “
Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum
,”
Phys. Rev. Lett.
83
,
967
(
1999
).
6.
M.
Lanata
,
M.
Cherchi
,
A.
Zappettini
,
S. M.
Pietralunga
, and
M.
Martinelli
, “
Titania inverse opals for infrared optical applications
,”
Opt. Mater.
17
,
11
(
2001
).
7.
K. R.
Phillips
,
N.
Vogel
,
Y.
Hu
,
M.
Kolle
,
C. C.
Perry
, and
J.
Aizenberg
, “
Tunable anisotropy in inverse opals and emerging optical properties
,”
Chem. Mater.
26
,
1622
(
2014
).
8.
E.
Armstrong
and
C.
O'Dwyer
, “
Artificial opal photonic crystals and inverse opal structures: Fundamentals and applications from optics to energy storage
,”
J. Mater. Chem. C
3
,
6109
(
2015
).
9.
G.
Collins
,
E.
Armstrong
,
D.
McNulty
,
S.
O'Hanlon
,
H.
Geaney
, and
C.
O'Dwyer
, “
2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion
,”
Sci. Tech. Adv. Mater.
17
,
563
(
2016
).
10.
A.
Stein
, “
Batteries take charge
,”
Nat. Nanotechnol.
6
,
262
(
2011
).
11.
Y. S.
Zhang
,
C.
Zhu
, and
Y.
Xia
, “
Inverse opal scaffolds and their biomedical applications
,”
Adv. Mater.
29
,
1701115
(
2017
).
12.
S.
Kim
,
A. N.
Mitropoulos
,
J. D.
Spitzberg
,
D. L.
Kaplan
, and
F. G.
Omenetto
, “
Silk protein based hybrid photonic-plasmonic crystal
,”
Opt. Express
21
,
8897
(
2013
).
13.
K.
Busch
and
S.
John
, “
Photonic band gap formation in certain self-organizing systems
,”
Phys. Rev. E
58
,
3896
(
1998
).
14.
X.
Chen
and
S. S.
Mao
, “
Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications
,”
Chem. Rev.
107
,
2891
(
2007
).
15.
J. I. L.
Chen
,
E.
Loso
,
N.
Ebrahim
, and
G. A.
Ozin
, “
Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals
,”
J. Am. Chem. Soc.
130
,
5420
(
2008
).
16.
E. S.
Thiele
and
R. H.
French
, “
Light-scattering properties of representative, morphological rutile titania particles studied using a finite-element method
,”
J. Am. Ceram. Soc.
81
,
469
(
1998
).
17.
L.
Mishchenko
,
B.
Hatton
,
M.
Kolle
, and
J.
Aizenberg
, “
Patterning hierarchy in direct and inverse opal crystals
,”
Small
8
,
1904
(
2012
).
18.
D.
McNulty
,
H.
Geaney
, and
C.
O'Dwyer
, “
Carbon-coated honeycomb Ni-Mn-Co-O inverse opal: A high capacity ternary transition metal oxide anode for Li-ion batteries
,”
Sci. Rep.
7
,
42263
(
2017
).
19.
A.
Mihi
,
M.
Ocaña
, and
H.
Míguez
, “
Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media
,”
Adv. Mater.
18
,
2244
(
2006
).
20.
C.
Deleuze
,
B.
Sarrat
,
F.
Ehrenfeld
,
S.
Perquis
,
C.
Derail
, and
L.
Billon
, “
Photonic properties of hybrid colloidal crystals fabricated by a rapid dip-coating process
,”
Phys. Chem. Chem. Phys.
13
,
10681
(
2011
).
21.
I.
Yamaguchi
,
M.
Watanabe
,
T.
Shinagawa
,
M.
Chigane
,
M.
Inaba
,
A.
Tasaka
, and
M.
Izaki
, “
Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template
,”
ACS Appl. Mater. Interfaces
1
,
1070
(
2009
).
22.
S.
Reculusa
and
S.
Ravaine
, “
Synthesis of colloidal crystals of controllable thickness through the Langmuir−Blodgett technique
,”
Chem. Mater.
15
,
598
(
2003
).
23.
A. S.
Dimitrov
and
K.
Nagayama
, “
Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces
,”
Langmuir
12
,
1303
(
1996
).
24.
E. A.
Gaulding
 et al., “
Fabrication and optical characterization of polystyrene opal templates for the synthesis of scalable, nanoporous (photo)electrocatalytic materials by electrodeposition
,”
J. Mater. Chem. A
5
,
11601
(
2017
).
25.
J. D.
Joannopoulos
,
P. R.
Villeneuve
, and
S.
Fan
, “
Photonic crystals: Putting a new twist on light
,”
Nature
386
,
143
(
1997
).
26.
C.
López
, “
Materials aspects of photonic crystals
,”
Adv. Mater.
15
,
1679
(
2003
).
27.
D.
Van Gough
,
A. T.
Juhl
, and
P. V.
Braun
, “
Programming structure into 3D nanomaterials
,”
Mater. Today
12
,
28
(
2009
).
28.
K. R.
Phillips
,
G. T.
England
,
S.
Sunny
,
E.
Shirman
,
T.
Shirman
,
N.
Vogel
, and
J.
Aizenberg
, “
A colloidoscope of colloid-based porous materials and their uses
,”
Chem. Soc. Rev.
45
,
281
(
2016
).
29.
G.
Collins
,
M.
Blömker
,
M.
Osiak
,
J. D.
Holmes
,
M.
Bredol
, and
C.
O'Dwyer
, “
Three-dimensionally ordered hierarchically porous tin dioxide inverse opals and immobilization of palladium nanoparticles for catalytic applications
,”
Chem. Mater.
25
,
4312
(
2013
).
30.
A.
Vu
,
Y.
Qian
, and
A.
Stein
, “
Porous electrode materials for lithium-ion batteries: How to prepare them and what makes them special
,”
Adv. Energy Mater.
2
,
1056
(
2012
).
31.
D.
McNulty
,
E.
Carroll
, and
C.
O'Dwyer
, “
Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability, and high structural stability
,”
Adv. Energy. Mater.
7
,
1602291
(
2017
).
32.
H.
Zhang
,
X.
Yu
, and
P. V.
Braun
, “
Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
,”
Nat. Nanotechnol.
6
,
277
(
2011
).
33.
L. K.
Teh
,
C. C.
Wong
,
H. Y.
Yang
,
S. P.
Lau
, and
S. F.
Yu
, “
Lasing in electrodeposited ZnO inverse opal
,”
Appl. Phys. Lett.
91
,
161116
(
2007
).
34.
D.
Zhang
,
S.
Chen
,
M.
Jiang
, and
L.
Ye
, “
Optimization of lasing in an inverted-opal titania photonic crystal cavity as an organic solid-state dye-doped laser
,”
Appl. Opt
53
,
7624
(
2014
).
35.
J.
Martorell
,
R.
Vilaseca
, and
R.
Corbalán
, “
Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice
,”
Phys. Rev. A
55
,
4520
(
1997
).
36.
A. A.
Fedyanin
,
O. A.
Aktsipetrov
,
D. A.
Kurdyukov
,
V. G.
Golubev
, and
M.
Inoue
, “
Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals
,”
Appl. Phys. Lett.
87
,
151111
(
2005
).
37.
P. P.
Markowicz
,
H.
Tiryaki
,
H.
Pudavar
,
P. N.
Prasad
,
N. N.
Lepeshkin
, and
R. W.
Boyd
, “
Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystals
,”
Phys. Rev. Lett.
92
,
083903
(
2004
).
38.
O. Y.
Stanislav
,
I. Z.
Kirill
,
A. G.
Evgeny
,
V. Y.
Egor
,
K. Z.
Arsen
,
M. M.
Vladimir
,
A. E.
Gennadi
, and
S. G.
Vladimir
, “
Enhanced third-harmonic generation in photonic crystals at band-gap pumping
,”
J. Phys. D
50
,
055105
(
2017
).
39.
J.-Q.
Wang
,
Y.-Y.
Wu
,
S.-S.
Yuan
,
M.
Zhang
, and
X.-B.
Chen
, “
Preparation and optical properties of tin dioxide inverse opal film
,”
Rare Met.
(published online,
2015
).
40.
V.
Jovic
,
T.
Söhnel
,
J.
Metson
, and
G.
Waterhouse
, in
Matter and Materials Meeting
(
2011
), p.
26
.
41.
J. S.
King
,
E.
Graugnard
, and
C. J.
Summers
, “
TiO2 inverse opals fabricated using low-temperature atomic layer deposition
,”
Adv. Mater.
17
,
1010
(
2005
).
42.
C.
Cheng
,
S. K.
Karuturi
,
L.
Liu
,
J.
Liu
,
H.
Li
,
L. T.
Su
,
A. I. Y.
Tok
, and
H. J.
Fan
, “
Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation
,”
Small
8
,
37
(
2012
).
43.
A.
Mills
and
M.
Crow
, “
A study of factors that change the wettability of titania films
,”
Int. J. Photoenergy
2008
,
470670
.
44.
E.
Pavarini
,
L. C.
Andreani
,
C.
Soci
,
M.
Galli
,
F.
Marabelli
, and
D.
Comoretto
, “
Band structure and optical properties of opal photonic crystals
,”
Phys. Rev. B
72
,
045102
(
2005
).
45.
J.
Fang
,
Y.
Xuan
, and
Q.
Li
, “
Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals
,”
Sci. China Technol. Sci.
53
,
3088
(
2010
).
46.
D. S.
Raimundo
,
F. J.
Fernandez
, and
W. J.
Salcedo
, “
Self-assembled polystyrene micro-spheres applied for photonic crystals and templates fabrication
,”
J. Integr. Circuits Syst.
1
,
39
(
2006
).
47.
H.
Zhang
,
R.-G.
Duan
,
F.
Li
,
Q.
Tang
, and
W.-C.
Li
, “
Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres
,”
Mater. Des.
28
,
1045
(
2007
).
48.
Y.
Xie
,
R.
Xing
,
Q.
Li
,
L.
Xu
, and
H.
Song
, “
Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing
,”
Sens. Actuators B-Chem.
211
,
255
(
2015
).
49.
D.
Reyes-Coronado
,
G.
Rodríguez-Gattorno
,
M. E.
Espinosa-Pesqueira
,
C.
Cab
,
R. d
Coss
, and
G.
Oskam
, “
Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile
,”
Nanotechnology
19
,
145605
(
2008
).
50.
B. K.
Mutuma
,
G. N.
Shao
,
W. D.
Kim
, and
H. T.
Kim
, “
Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties
,”
J. Colloid Interface Sci.
442
,
1
(
2015
).
51.
M. G.
Brik
,
Ž. M.
Antic
,
K.
Vukovic
, and
M. D.
Dramicanin
, “
Judd-Ofelt analysis of Eu3+ emission in TiO2 anatase nanoparticles
,”
Mater. Trans.
56
,
1416
(
2015
).
52.
F.
Tian
,
Y.
Zhang
,
J.
Zhang
, and
C.
Pan
, “
Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets
,”
J. Phys. Chem. C
116
,
7515
(
2012
).
53.
Y.
Nishijima
,
K.
Ueno
,
S.
Juodkazis
,
V.
Mizeikis
,
H.
Misawa
,
T.
Tanimura
, and
K.
Maeda
, “
Inverse silica opal photonic crystals for optical sensing applications
,”
Opt. Express
15
,
12979
(
2007
).
54.
K.
Sumioka
,
H.
Kayashima
, and
T.
Tsutsui
, “
Tuning the optical properties of inverse opal photonic crystals by deformation
,”
Adv. Mater.
14
,
1284
(
2002
).
55.
J. C.
Hong
,
J. H.
Park
,
C.
Chun
, and
D. Y.
Kim
, “
Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals
,”
Adv. Funct. Mater.
17
,
2462
(
2007
).
56.
J.
Wang
,
C.
Zhou
,
L.
Su
,
X.
Ji
,
X.
Chen
, and
M.
Zhang
, “
Preparation of inverse opal cerium dioxide for optical properties research
,”
Mater. Lett.
158
,
123
(
2015
).
57.
S. H.
Jones
,
M. D.
King
, and
A. D.
Ward
, “
Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads
,”
Phys. Chem. Chem. Phys.
15
,
20735
(
2013
).
58.
S. G.
Romanov
,
M.
Bardosova
,
I. M.
Povey
,
M. E.
Pemble
, and
C. M. S.
Torres
, “
Understanding of transmission in the range of high-order photonic bands in thin opal film
,”
Appl. Phys. Lett.
92
,
191106
(
2008
).
59.
T.
Maka
,
D.
Chigrin
,
S.
Romanov
, and
C.
Torres
, “
Three dimensional photonic crystals in the visible regime
,”
Prog. Electromagn. Res.
41
,
307
(
2003
).
60.
K. S.
Napolskii
 et al., “
Fabrication of artificial opals by electric-field-assisted vertical deposition
,”
Langmuir
26
,
2346
(
2010
).
61.
E.
Graugnard
,
V.
Chawla
,
D.
Lorang
, and
C. J.
Summers
, “
High filling fraction gallium phosphide inverse opals by atomic layer deposition
,”
Appl. Phys. Lett.
89
,
211102
(
2006
).
62.
T. K.
Rahul
and
N.
Sandhyarani
, “
Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis
,”
Nanoscale
7
,
18259
(
2015
).
63.
Y.
Li
,
F.
Piret
,
T.
Léonard
, and
B.-L.
Su
, “
Rutile TiO2 inverse opal with photonic bandgap in the UV–visible range
,”
J. Colloid Interface Sci.
348
,
43
(
2010
).
64.
S.
Lusi
,
C.
Bin
,
K.
Kyoji
,
S.
Okihiro
, and
K.
Toshikuni
, “
Fabrication of inverse opal TiO2 waveguide structure
,”
Jpn. J. Appl. Phys., Part 1
47
,
1208
(
2008
).
65.
D. C.
Bell
,
Y.
Wu
,
C. J.
Barrelet
,
S.
Gradečak
,
J.
Xiang
,
B. P.
Timko
, and
C. M.
Lieber
, “
Imaging and analysis of nanowires
,”
Microsc. Res. Tech.
64
,
373
(
2004
).
66.
J.
Reyes-Gasga
,
A.
Gómez-Rodríguez
,
X.
Gao
, and
M.
José-Yacamán
, “
On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles
,”
Ultramicroscopy
108
,
929
(
2008
).
67.
D.
Gaillot
,
T.
Yamashita
, and
C. J.
Summers
, “
Photonic band gaps in highly conformal inverse-opal based photonic crystals
,”
Phys. Rev. B
72
,
205109
(
2005
).
68.
D. P.
Gaillot
and
C. J.
Summers
, “
Photonic band gaps in non-close-packed inverse opals
,”
J. Appl. Phys.
100
,
113118
(
2006
).

Supplementary Material

You do not currently have access to this content.