The impact of doping on the bonding energy hierarchy and melting point of phase change material germanium telluride is studied. The underlying bonding energy decomposition is based on density functional theory calculations. It is shown that doping can influence the bonding energy hierarchy to lower the melting temperature and latent heat of fusion. Conversely, doping slightly increases the specific heat capacity. Nevertheless, doping induces a net reduction in energy consumption for the “reset” operation of phase change memory devices. This bonding energy analysis is three to four orders of magnitude more computationally efficient than the widely used ab initio molecular dynamics simulations. It is expected that this approach could be useful for next-generation high-throughput simulation-based phase change material design and optimization.

1.
F.
Rao
,
K.
Ding
,
Y.
Zhou
,
Y.
Zheng
,
M.
Xia
,
S.
Lv
,
Z.
Song
,
S.
Feng
,
I.
Ronneberger
,
R.
Mazzarello
,
W.
Zhang
, and
E.
Ma
, “
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing
,”
Science
358
(
6369
),
1423
1427
(
2017
).
2.
D.
Loke
,
T. H.
Lee
,
W. J.
Wang
,
L. P.
Shi
,
R.
Zhao
,
Y. C.
Yeo
,
T. C.
Chong
, and
S. R.
Elliott
, “
Breaking the speed limits of phase-change memory
,”
Science
336
(
6088
),
1566
1569
(
2012
).
3.
S.
Kim
,
B.-J.
Bae
,
Y.
Zhang
,
R.
Jeyasingh
,
Y.
Kim
,
I.-G.
Baek
,
S.
Park
,
S.-W.
Nam
, and
H.-S.
Wong
, “
One-dimensional thickness scaling study of phase change material(Ge2Sb2Te5) using a pseudo 3-terminal device
,”
IEEE Trans. Electron Devices
58
(
5
),
1483
1489
(
2011
).
4.
R. E.
Simpson
,
M.
Krbal
,
P.
Fons
,
A. V.
Kolobov
,
J.
Tominaga
,
T.
Uruga
, and
H.
Tanida
, “
Toward the ultimate limit of phase change in Ge2Sb2Te5
,”
Nano Lett.
10
(
2
),
414
419
(
2010
).
5.
M. A.
Caldwell
,
S.
Raoux
,
R. Y.
Wang
,
H.-S.
Philip Wong
, and
D. J.
Milliron
, “
Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles
,”
J. Mater. Chem.
20
(
7
),
1285
1291
(
2010
).
6.
T.
Siegrist
,
P.
Jost
,
H.
Volker
,
M.
Woda
,
P.
Merkelbach
,
C.
Schlockermann
, and
M.
Wuttig
, “
Disorder-induced localization in crystalline phase-change materials
,”
Nat. Mater.
10
(
3
),
202
208
(
2011
).
7.
H.-S. P.
Wong
,
S.
Raoux
,
S.
Kim
,
J.
Liang
,
J. P.
Reifenberg
,
B.
Rajendran
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phase change memory
,”
Proc. IEEE
98
(
12
),
2201
2227
(
2010
).
8.
S.
Raoux
, in
Phase Change Materials: Science and Applications
, edited by
S.
Raoux
and
M.
Wuttig
(
Springer-Verlag GMBH
,
2008
).
9.
J.
Liu
,
B.
Yu
, and
M. P.
Anantram
, “
Scaling analysis of nanowire phase-change memory
,”
IEEE Electron Device Lett.
32
(
10
),
1340
1342
(
2011
).
10.
A.
Pirovano
,
A.
Lacaita
,
A.
Benvenuti
,
F.
Pellizzer
,
S.
Hudgens
, and
R.
Bez
, “
Scaling analysis of phase-change memory technology
,” in
Technical Digest of IEEE International Electron Devices Meeting
(
2003
), pp.
29.6.1
29.6.4
.
11.
S.
Kim
and
H.-S.
Wong
, “
Analysis of temperature in phase change memory scaling
,” IEEE
Electron Device Lett.
28
(
8
),
697
699
(
2007
).
12.
G.
Atwood
, “
Engineering: Phase-change materials for electronic memories
,”
Science
321
(
5886
),
210
211
(
2008
).
13.
See https://en.wikipedia.org/wiki/3D_XPoint for information about 3D XPoint non-volatile memory.
14.
B.
Yu
,
X.
Sun
,
S.
Ju
,
D.
Janes
, and
M.
Meyyappan
, “
Chalcogenide-nanowire-based phase change memory
,”
IEEE Trans. Nanotechnol.
7
(
4
),
496
502
(
2008
).
15.
J.
Reifenberg
,
D.
Kencke
, and
K.
Goodson
, “
The impact of thermal boundary resistance in phase-change memory devices
,” IEEE
Electron Device Lett.
29
(
10
),
1112
1114
(
2008
).
16.
J.
Reifenberg
,
K.-W.
Chang
,
M.
Panzer
,
S.
Kim
,
J.
Rowlette
,
M.
Asheghi
,
H.-S.
Wong
, and
K.
Goodson
, “
Thermal boundary resistance measurements for phase-change memory devices
,”
IEEE Electron Device Lett.
31
(
1
),
56
58
(
2010
).
17.
F.
Xiong
,
A.
Liao
,
D.
Estrada
, and
E.
Pop
, “
Low-power switching of phase-change materials with carbon nanotube electrodes
,”
Science
332
,
568
570
(
2011
).
18.
E.
Simpson
,
P.
Fons
,
V.
Kolobov
,
T.
Fukaya
,
M.
Krbal
,
T.
Yagi
, and
J.
Tominaga
, “
Interfacial phase-change memory
,”
Nat. Nano
6
,
501
505
(
2011
).
19.
J.
Liu
, “
Multiscale simulation of phase change memory
,” Ph.D. dissertation (
University of Washington
,
2013
).
20.
J.
Liu
, “
A multi-scale analysis of the impact of pressure on melting of crystalline phase change material germanium telluride
,”
Appl. Phys. Lett.
105
(
17
),
173509
(
2014
).
21.
M.
Krbal
,
A. V.
Kolobov
,
J.
Haines
,
A.
Pradel
,
M.
Ribes
,
P.
Fons
,
J.
Tominaga
,
C.
Levelut
,
R.
Le Parc
, and
M.
Hanfland
, “
Temperature independence of pressure-induced amorphization of the phase-change memory alloy Ge2Sb2Te5
,”
Appl. Phys. Lett.
93
(
3
),
031918
(
2008
).
22.
S.
Kozyukhin
,
A.
Sherchenkov
,
A.
Babich
,
P.
Lazarenko
,
H. P.
Nguyen
, and
O.
Prikhodko
, “
Peculiarities of bi doping of GeSbTe thin films for PCM devices
,”
Can. J. Phys.
92
(
7/8
),
684
689
(
2014
).
23.
B.
Qiao
,
J.
Feng
,
Y.
Lai
,
Y.
Ling
,
Y.
Lin
,
T.
Tang
,
B.
Cai
, and
B.
Chen
, “
Effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory
,”
Appl. Surf. Sci.
252
(
24
),
8404
8409
(
2006
).
24.
A.
Babich
,
A.
Sherchenkov
,
S.
Kozyukhin
,
P.
Lazarenko
,
O.
Boytsova
, and
A.
Shuliatyev
, “
Effect of doping on the crystallization kinetics of phase change memory materials on the basis of GeSbTe system
,”
J. Therm. Anal. Calorim.
127
(
1
),
283
290
(
2017
).
25.
K. B.
Borisenko
,
Y.
Chen
,
S. A.
Song
, and
D. J. H.
Cockayne
, “
Nanoscale phase separation and building blocks of Ge2Sb2Te5N and Ge2Sb2Te5N2 thin films
,”
Chem. Mater.
21
(
21
),
5244
5251
(
2009
).
26.
M. S.
Kim
,
S. H.
Cho
,
S. K.
Hong
,
J. S.
Roh
, and
D. J.
Choi
, “
Crystallization characteristics of nitrogen-doped Sb2Te3 films for PRAM application
,”
Ceram. Int.
34
(
4
),
1043
1046
(
2008
).
27.
S.
Privitera
,
E.
Rimini
, and
R.
Zonca
, “
Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements
,”
Appl. Phys. Lett.
85
(
15
),
3044
3046
(
2004
).
28.
S.
Raoux
,
D.
Cabrera
,
A.
Devasia
,
S.
Kurinec
,
H.
Cheng
,
Y.
Zhu
,
C.
Breslin
,
J.
Jordan-Sweet
,
C. T.
Rettner
,
G. W.
Burr
, and
M.
Salinga
. “
Influence of dopants on the crystallization temperature, crystal structure, resistance, and threshold field for Ge2Sb2Te5 and GeTe phase change materials
,” in
EPCOS
(
2011
).
29.
K.
Wang
,
C.
Steimer
,
D.
Wamwangi
,
S.
Ziegler
, and
M.
Wuttig
, “
Effect of indium doping on Ge2Sb2Te5 thin films for phase-change optical storage
,”
Appl. Phys. A
80
(
8
),
1611
1616
(
2005
).
30.
J.
Zhang
,
R.
Huang
,
L.
Shi
,
L.
Wang
,
F.
Wei
,
T.
Kong
, and
G.
Cheng
, “
Bi doping modulating structure and phase-change properties of GeTe nanowires
,”
Appl. Phys. Lett.
102
(
6
),
063104
(
2013
).
31.
J.
Zhou
,
Z.
Sun
,
L.
Xu
, and
R.
Ahuja
, “
Effect of dopants on the structure and properties of Ge2Sb2Te5 studied by ab initio calculations
,”
Solid State Commun.
148
(
3–4
),
113
116
(
2008
).
32.
X.
Zhou
,
L.
Wu
,
Z.
Song
,
F.
Rao
,
M.
Zhu
,
C.
Peng
,
D.
Yao
,
S.
Song
,
B.
Liu
, and
S.
Feng
, “
Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application
,”
Appl. Phys. Lett.
101
(
14
),
142104
(
2012
).
33.
J.
Akola
and
R. O.
Jones
, “
Comment on ‘formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy’
,”
Phys. Rev. Lett.
104
(
1
),
019603
(
2010
).
34.
J.
Akola
and
R. O.
Jones
, “
Binary alloys of Ge and Te: Order, voids, and the eutectic composition
,”
Phys. Rev. Lett.
100
(
20
),
205502
(
2008
).
35.
T.
Matsunaga
,
J.
Akola
,
S.
Kohara
,
T.
Honma
,
K.
Kobayashi
,
E.
Ikenaga
,
R. O.
Jones
,
N.
Yamada
,
M.
Takata
, and
R.
Kojima
, “
From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
,”
Nat. Mater.
10
(
2
),
129
134
(
2011
).
36.
N.
Mounet
,
M.
Gibertini
,
P.
Schwaller
,
D.
Campi
,
A.
Merkys
,
A.
Marrazzo
,
T.
Sohier
,
I. E.
Castelli
,
A.
Cepellotti
,
G.
Pizzi
, and
N.
Marzari
, “
Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds
,”
Nat. Nanotechnol.
13
(
3
),
246
252
(
2018
).
37.
M.
Wuttig
and
N.
Yamada
, “
Phase-change materials for rewriteable data storage
,”
Nat. Mater.
6
(
11
),
824
832
(
2007
).
38.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garca
,
J.
Junquera
,
P.
Ordejon
, and
S.-P.
Daniel
, “
The SIESTA method for ab initio order- N materials simulation
,”
J. Phys.: Condens. Matter
14
(
11
),
2745
2779
(
2002
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
40.
I.
Mayer
, “
An exact chemical decomposition scheme for the molecular energy
,”
Chem. Phys. Lett.
382
,
265
269
(
2003
).
41.
R. M.
Martin
,
Electronic Structure Basic Theory and Practical Method
(
Cambridge University Press
,
Cambridge, UK
,
2004
).
42.
R. T.
Sanderson
, “
Interrelation of bond dissociation energies and contributing bond energies
,”
J. Am. Chem. Soc.
97
(
6
),
1367
1372
(
1975
).
43.
F.
Hecht
, “
New development in freefem++
,”
J. Numer. Math.
20
(
3–4
),
251
266
(
2012
).
44.
L. L.
Chang
,
P. J.
Stiles
, and
L.
Esaki
, “
Electron barriers in Al-AL2O3-SnTe and Al-AL2O3-GeTe tunnel junctions
,”
IBM J. Res. Develop.
10
(
6
),
484
486
(
1966
).
45.
A. V.
Kolobov
,
M.
Krbal
,
P.
Fons
,
J.
Tominaga
, and
T.
Uruga
, “
Distortion-triggered loss of long-range order in solids with bonding energy hierarchy
,”
Nat. Chem.
3
(
4
),
311
316
(
2011
).
46.
T.-Y.
Lai
,
C.-Y.
Yang
,
H.-J.
Lin
,
C.-Y.
Yang
, and
W.-P.
Hu
, “
Benchmark of density functional theory methods on the prediction of bond energies and bond distances of noble-gas containing molecules
,”
J. Chem. Phys.
134
(
24
),
244110
(
2011
).
47.
R. J.
Levis
, “
Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses
,”
Science
292
(
5517
),
709
713
(
2001
).
48.
See http://www.ioffe.ru/ for information about the melting temperatures of the crystalline silicon, germanium, and tin.
49.
J.
Liu
,
X.
Xu
,
L.
Brush
, and
M. P.
Anantram
, “
A multi-scale analysis of the crystallization of amorphous germanium telluride using ab initio simulations and classical crystallization theory
,”
J. Appl. Phys.
115
(
2
),
023513
(
2014
).
50.
R.
Shaltaf
,
X.
Gonze
,
M.
Cardona
,
R. K.
Kremer
, and
G.
Siegle
, “
Lattice dynamics and specific heat of alpha-GeTe: Theoretical and experimental study
,”
Phys. Rev. B
79
(
7
),
075204
(
2009
).
51.
V. M.
Zhdanov
, “
Low temperature heat capacity, enthalpy, and entropy of germanium telluride
,”
Russ. J. Phys. Chem.
45
,
1357
(
1971
).
52.
J.-W.
Park
,
S. H.
Eom
,
H.
Lee
,
J. L. F.
Da Silva
,
Y.-S.
Kang
,
T.-Y.
Lee
, and
Y. H.
Khang
, “
Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory
,”
Phys. Rev. B
80
(
11
),
115209
(
2009
).
53.
K.
Shportko
,
S.
Kremers
,
M.
Woda
,
D.
Lencer
,
J.
Robertson
, and
M.
Wuttig
, “
Resonant bonding in crystalline phase-change materials
,”
Nat. Mater.
7
(
8
),
653
658
(
2008
).
54.
J.
Liu
,
X.
Xu
, and
M.
Anantram
, “
Role of inelastic electron-phonon scattering in electron transport through ultra-scaled amorphous phase change material nanostructures
,”
J. Comput. Electron.
13
,
620
626
(
2014
).
55.
J.
Liu
,
X.
Xu
, and
M.
Anantram
, “
Subthreshold electron transport properties of ultrascaled phase change memory
,”
IEEE Electron Device Lett.
35
(
5
),
533
535
(
2014
).
56.
J.
Liu
and
M. P.
Anantram
, “
Low-bias electron transport properties of germanium telluride ultrathin films
,”
J. Appl. Phys.
113
(
6
),
063711
(
2013
).
57.
J.
Liu
, “
Microscopic origin of electron transport properties and ultrascalability of amorphous phase change material germanium telluride
,”
IEEE Trans. Electron Devices
64
(
5
),
2207
2215
(
2017
).
58.
H.-Y.
Cheng
,
K.-F.
Kao
,
C.-M.
Lee
, and
T.-S.
Chin
, “
Crystallization kinetics of GaSbTe films for phase change memory
,”
Thin Solid Films
516
(
16
),
5513
5517
(
2008
).
You do not currently have access to this content.