Ni-GeSn based materials are promising in order to obtain contacts in complementary metal oxide semiconductor and Si photonic devices. In this work, a systematic and comprehensive study of the solid-state reaction between NiPt thin films and Ge0.9Sn0.1 layers is carried out. A particular focus is given on the impact of the addition of 10 at. % of Pt in Ni thin films. In situ X-ray diffraction and in-plane reciprocal space map measurements reveal a sequential growth in which the first phase appearing corresponds to a Ni-rich phase: (Ni0.9Pt0.1)5(Ge0.9Sn0.1)3. Then, at 245 °C, the Ni-rich phase vanishes to the benefit of the mono-stanogermanide phase (Ni0.9Pt0.1)(Ge0.9Sn0.1), which is unstable. At 360 °C, a more stable (Ni1–yPty)(Ge1–xSnx) phase is obtained concomitantly to the formation of PtSnx compounds. Finally, Sn segregation occurs at even higher temperatures. Even if Pt addition in Ni thin films complicates the phase formation sequence, it positively impacts the surface morphology and roughness, delays film agglomeration and Sn segregation, and stabilizes the electrical properties of the stanogermanide in a wide range of temperatures.

1.
B.
Vincent
,
Y.
Shimura
,
S.
Takeuchi
,
T.
Nishimura
,
G.
Eneman
,
A.
Firrincieli
,
J.
Demeulemeester
,
A.
Vantomme
,
T.
Clarysse
,
O.
Nakatsuka
,
S.
Zaima
,
J.
Dekoster
,
M.
Caymax
, and
R.
Loo
, “
Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors
,”
Microelectron. Eng.
88
(
4
),
342
346
(
2011
).
2.
S.
Takeuchi
,
Y.
Shimura
,
T.
Nishimura
,
B.
Vincent
,
G.
Eneman
,
T.
Clarysse
,
J.
Demeulemeester
,
A.
Vantomme
,
J.
Dekoster
,
M.
Caymax
,
R.
Loo
,
A.
Sakai
,
O.
Nakatsuka
, and
S.
Zaima
, “
Ge1–xSnx stressors for strained-Ge CMOS
,”
Solid-State Electron.
60
(
1
),
53
57
(
2011
).
3.
S.
Wirths
,
R.
Geiger
,
N.
von den Driesch
,
G.
Mussle
,
T.
Stoica
,
S.
Mantl
,
Z.
Ikonic
,
M.
Luysberg
,
S.
Chiussi
,
J. M.
Hartmann
,
H.
Sigg
,
J.
Faist
,
D.
Buca
, and
D.
Grützmacher
, “
Lasing in direct-bandgap GeSn alloy grown on Si
,”
Nat. Photonics
9
(
2
),
88
92
(
2015
).
4.
K. P.
Homewood
and
M. A.
Lourenco
, “
OPTOELECTRONICS The rise of the GeSn laser
,”
Nat. Photonics
9
(
2
),
78
79
(
2015
).
5.
J.
Aubin
,
J. M.
Hartmann
,
J. P.
Barnes
,
J. B.
Pin
, and
M.
Bauer
, “
Very low temperature epitaxy of heavily in situ phosphorous doped Ge layers and high Sn content GeSn layers
,”
ECS J. Solid State Sci. Technol.
6
(
1
),
P21
P26
(
2017
).
6.
S.
Zaima
,
O.
Nakatsuka
,
N.
Taoka
,
M.
Kurosawa
,
W.
Takeuchi
, and
M.
Sakashita
, “
Growth and applications of GeSn-related group-IV semiconductor materials
,”
Sci. Technol. Adv. Mater.
16
(
4
),
043502
(
2015
).
7.
S.
Al-Kabi
,
S. A.
Ghetmiri
,
J.
Margetis
,
T.
Pham
,
Y.
Zhou
,
W.
Dou
,
B.
Collier
,
R.
Quinde
,
W.
Du
,
A.
Mosleh
,
J.
Liu
,
G.
Sun
,
R. A.
Soref
,
J.
Tolle
,
B.
Li
,
M.
Mortazavi
,
H. A.
Naseem
, and
S.-Q.
Yu
, “
An optically pumped 2.5 μm GeSn laser on Si operating at 110 K
,”
Appl. Phys. Lett.
109
(
17
),
171105
(
2016
).
8.
V.
Reboud
,
A.
Gassenq
,
N.
Pauc
,
J.
Aubin
,
L.
Milord
,
Q. M.
Thai
,
M.
Bertrand
,
K.
Guilloy
,
D.
Rouchon
,
J.
Rothman
,
T.
Zabel
,
F. A.
Pilon
,
H.
Sigg
,
A.
Chelnokov
,
J. M.
Hartmann
, and
V.
Calvo
, “
Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K
,”
Appl. Phys. Lett.
111
(
9
),
092101
(
2017
).
9.
S.
Wirths
,
R.
Troitsch
,
G.
Mussler
,
P.
Zaumseil
,
J.-M.
Hartmann
,
T.
Schroeder
,
S.
Mantl
, and
D.
Buca
, “
Ni(SiGeSn) metal contact formation on low bandgap strained (Si)Ge(Sn) semiconductors
,”
ECS Trans.
64
(
6
),
107
112
(
2014
).
10.
S.
Wirths
,
R.
Troitsch
,
G.
Mussler
,
J.-M.
Hartmann
,
P.
Zaumseil
,
T.
Schroeder
,
S.
Mantl
, and
D.
Buca
, “
Ternary and quaternary Ni(Si)Ge(Sn) contact formation for highly strained Ge p- and n-MOSFETs
,”
Semicond. Sci. Technol.
30
(
5
),
055003
(
2015
).
11.
L.
Wang
,
G.
Han
,
S.
Su
,
Q.
Zhou
,
Y.
Yang
,
P.
Guo
,
W.
Wang
,
Y.
Tong
,
P. S. Y.
Lim
,
B.
Liu
,
E. Y.-J.
Kong
,
C.
Xue
,
Q.
Wang
,
B.
Cheng
, and
Y.-C.
Yeo
, “
Thermally stable multi-phase nickel-platinum stanogermanide contacts for germanium-tin channel MOSFETs
,”
Electrochem. Solid-State Lett.
15
(
6
),
H179
H181
(
2012
).
12.
Y.
Liu
,
H.
Wang
,
J.
Yan
, and
G.
Han
, “
Reduction of formation temperature of nickel mono-stanogermanide [Ni(GeSn)] by the incorporation of tin
,”
ECS Solid State Lett.
3
(
2
),
P11
P13
(
2014
).
13.
C.
Schulte-Braucks
,
S.
Glass
,
E.
Hofmann
,
D.
Stange
,
N.
von den Driesch
,
J. M.
Hartmann
,
Z.
Ikonic
,
Q. T.
Zhao
,
D.
Buca
, and
S.
Mantl
, “
Process modules for GeSn nanoelectronics with high Sn-contents
,”
Solid-State Electron.
128
,
54
59
(
2017
).
14.
M.
Noroozi
,
M.
Moeen
,
A.
Abedin
,
M. S.
Toprak
, and
H. H.
Radamson
, “
Effect of strain on Ni-(GeSn)x contact formation to GeSn nanowires
,”
MRS Proc.
1707
,
uu06-03
(
2014
).
15.
T.
Nishimura
,
O.
Nakatsuka
,
Y.
Shimura
,
S.
Takeuchi
,
B.
Vincent
,
A.
Vantomme
,
J.
Dekoster
,
M.
Caymax
,
R.
Loo
, and
S.
Zaima
, “
Formation of Ni(Ge1– xSnx) layers with solid-phase reaction in Ni/Ge1–xSnx/Ge systems
,”
Solid-State Electron.
60
(
1
),
46
52
(
2011
).
16.
J.
Demeulemeester
,
A.
Schrauwen
,
O.
Nakatsuka
,
S.
Zaima
,
M.
Adachi
,
Y.
Shimura
,
C. M.
Comrie
,
C.
Fleischmann
,
C.
Detavernier
,
K.
Temst
, and
A.
Vantomme
, “
Sn diffusion during Ni germanide growth on Ge1–xSnx
,”
Appl. Phys. Lett.
99
(
21
),
211905
(
2011
).
17.
C.
Lavoie
,
F. M.
d'Heurle
,
C.
Detavernier
, and
C.
Cabral
, Jr.
, “
Towards implementation of a nickel silicide process for CMOS technologies
,”
Microelectron. Eng.
70
(
2–4
),
144
157
(
2003
).
18.
N.
Breil
,
C.
Lavoie
,
A.
Ozcan
,
F.
Baumann
,
N.
Klymko
,
K.
Nummy
,
B.
Sun
,
J.
Jordan-Sweet
,
J.
Yu
,
F.
Zhu
,
S.
Narasimha
, and
M.
Chudzik
, “
Challenges of nickel silicidation in CMOS technologies
,”
Microelectron. Eng.
137
,
79
87
(
2015
).
19.
E.
Bourjot
,
M.
Grégoire
,
F.
Nemouchi
, and
D.
Mangelinck
, “
Thermal stability of Ni1−uPtu (0 < u < 0.15) germanosilicide
,”
J. Appl. Phys.
121
(
13
),
135302
(
2017
).
20.
P. S.
Lee
,
K. L.
Pey
,
D.
Mangelinck
,
J.
Ding
, and
L.
Chan
, “
In situ XRD analysis of Ni(Pt)/Si(100) reactions in low temperature regime 400°C
,”
Solid State Commun.
128
(
9
),
325
328
(
2003
).
21.
J.
Demeulemeester
,
D.
Smeets
,
C.
Van Bockstael
,
C.
Detavernier
,
C. M.
Comrie
,
N. P.
Barradas
,
A.
Vieira
, and
A.
Vantomme
, “
Pt redistribution during Ni(Pt) silicide formation
,”
Appl. Phys. Lett.
93
(
26
),
261912
(
2008
).
22.
O.
Cojocaru-Mirédin
,
D.
Mangelinck
,
K.
Hoummada
,
E.
Cadel
,
D.
Blavette
,
B.
Deconihout
, and
C.
Perrin-Pellegrino
, “
Snowplow effect and reactive diffusion in the Pt doped Ni-Si system
,”
Scr. Mater.
57
(
5
),
373
376
(
2007
).
23.
F.
Panciera
,
K.
Hoummada
,
M.
Grégoire
,
M.
Juhel
, and
D.
Mangelinck
, “
Pt redistribution in N-MOS transistors during Ni salicide process
,”
Microelectron. Eng.
107
,
173
177
(
2013
).
24.
A.
Quintero
,
P.
Gergaud
,
J.
Aubin
,
J.-M.
Hartmann
,
V.
Reboud
, and
P.
Rodriguez
, “
Ni/GeSn solid-state reaction monitored by combined X-ray diffraction analyses: Focus on the Ni-rich phase
,”
J. Appl. Crystallogr.
51
(
4
),
1133
1140
(
2018
).
25.
M.
Ellner
,
T.
Gödecke
, and
K.
Schubert
, “
Zur struktur der mischung nickel-germanium
,”
J. Less-Common Met.
24
(
1
),
23
40
(
1971
).
26.
B.
De Schutter
,
K.
Van Stiphout
,
N. M.
Santos
,
E.
Bladt
,
J.
Jordan-Sweet
,
S.
Bals
,
C.
Lavoie
,
C. M.
Comrie
,
A.
Vantomme
, and
C.
Detavernier
, “
Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)
,”
J. Appl. Phys.
119
(
13
),
135305
(
2016
).
27.
C.
Detavernier
and
C.
Lavoie
, “
Influence of Pt addition on the texture of NiSi on Si (0 0 1)
,”
Appl. Phys. Lett.
84
(
18
),
3549
3551
(
2004
).
28.
J.
Aubin
,
J. M.
Hartmann
,
A.
Gassenq
,
J. L.
Rouviere
,
E.
Robin
,
V.
Delaye
,
D.
Cooper
,
N.
Mollard
,
V.
Reboud
, and
V.
Calvo
, “
Growth and structural properties of step-graded, high Sn content GeSn layers on Ge
,”
Semicond. Sci. Technol.
32
(
9
),
094006
(
2017
).
29.
J.
Aubin
and
J. M.
Hartmann
, “
GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4
,”
J. Cryst. Growth
482
,
30
35
(
2018
).
30.
G.
Han
,
S.
Su
,
Q.
Zhou
,
P.
Guo
,
Y.
Yang
,
C.
Zhan
,
L.
Wang
,
W.
Wang
,
Q.
Wang
,
C.
Xue
,
B.
Cheng
, and
Y.-C.
Yeo
, “
Dopant segregation and nickel stanogermanide contact formation on p+Ge0.947Sn0.053 source/drain
,”
IEEE Electron Device Lett.
33
(
5
),
634
636
(
2012
).
31.
S.
Gaudet
,
C.
Detavernier
,
A. J.
Kellock
,
P.
Desjardins
, and
C.
Lavoie
, “
Thin film reaction of transition metals with germanium
,”
J. Vac. Sci. Technol. A
24
(
3
),
474
485
(
2006
).
32.
P.
Anres
,
M.
Gaune-Escard
,
J. P.
Bros
, and
E.
Hayer
, “
Enthalpy of formation of the (Pt–Sn) system
,”
J. Alloys Compd.
280
(
1
),
158
167
(
1998
).
33.
R.
Lbibb
and
R.
Castanet
, “
Calorimetric determination of the enthalpies of formation of the solid compounds of the Pt–Ge system
,”
J. Alloys Compd.
191
(
2
),
L13
L15
(
1993
).
34.
Y. Y.
Zhang
,
J.
Oh
,
S. G.
Li
,
S. Y.
Jung
,
K. Y.
Park
,
G. W.
Lee
,
P.
Majhi
,
H. H.
Tseng
,
R.
Jammy
, and
H. D.
Lee
, “
Improvement of thermal stability of Ni germanide using a Ni–Pt(1%) alloy on Ge-on-Si substrate for nanoscale Ge MOSFETs
,”
IEEE Trans. Nanotechnol.
9
(
2
),
258
263
(
2010
).
35.
P.
Durussel
,
R.
Massara
, and
P.
Feschotte
, “
Le système binaire Pt–Sn
,”
J. Alloys Compd.
215
(
1
),
175
179
(
1994
).
36.
V.
Grolier
and
R.
Schmid-Fetzer
, “
Thermodynamic analysis of the Pt–Sn system
,”
J. Alloys Compd.
450
(
1
),
264
271
(
2008
).
37.
A.
Nash
and
P.
Nash
, “
The Ge-Ni (Germanium-Nickel) system
,”
Bull. Alloy Phase Diagrams
8
(
3
),
255
264
(
1987
).
38.
M.
Bouville
,
D.
Chi
, and
D. J.
Srolovitz
, “
Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species
,”
Phys. Rev. Lett.
98
,
085503
(
2007
).
39.
Q.
Zhang
,
N.
Wu
,
T.
Osipowicz
,
L. K.
Bera
, and
C.
Zhu
, “
Formation and thermal stability of nickel germanide on germanium substrate
,”
Jpn. J. Appl. Phys., Part 2
44
(
10L
),
L1389
(
2005
).
40.
J. P.
Gambino
and
E. G.
Colgan
, “
Silicides and ohmic contacts
,”
Mater. Chem. Phys.
52
(
2
),
99
146
(
1998
).
41.
D.
Mangelinck
,
J. Y.
Dai
,
J. S.
Pan
, and
S. K.
Lahiri
, “
Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition
,”
Appl. Phys. Lett.
75
(
12
),
1736
1738
(
1999
).
42.
L. J.
Jin
,
K. L.
Pey
,
W. K.
Choi
,
E. A.
Fitzgerald
,
D. A.
Antoniadis
,
A. J.
Pitera
,
M. L.
Lee
,
D. Z.
Chi
,
M. A.
Rahman
,
T.
Osipowicz
, and
C. H.
Tung
, “
Effect of Pt on agglomeration and Ge out diffusion in Ni(Pt) germanosilicide
,”
J. Appl. Phys.
98
(
3
),
033520
(
2005
).
43.
M. H.
Kang
,
H. S.
Shin
,
J. H.
Yoo
,
G. W.
Lee
,
J. W.
Oh
,
P.
Majhi
,
R.
Jammy
, and
H. D.
Lee
, “
Thermally robust Ni germanide technology using cosputtering of Ni and Pt for high-performance nanoscale Ge MOSFETs
,”
IEEE Trans. Nanotechnol.
11
(
4
),
769
776
(
2012
).
44.
D. J.
Srolovitz
and
S. A.
Safran
, “
Capillary instabilities in thin films. I. Energetics
,”
J. Appl. Phys.
60
(
1
),
247
254
(
1986
).
45.
K. T.
Miller
,
F. F.
Lange
, and
D. B.
Marshall
, “
The instability of polycrystalline thin films: Experiment and theory
,”
J. Mater. Res.
5
(
1
),
151
160
(
1990
).
46.
R.
Takase
,
M.
Ishimaru
,
N.
Uchida
,
T.
Maeda
,
K.
Sato
,
R. R.
Lieten
, and
J.-P.
Locquet
, “
Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations
,”
J. Appl. Phys.
120
(
24
),
245304
(
2016
).
47.
C. M.
Comrie
,
C. B.
Mtshali
,
P. T.
Sechogela
,
N. M.
Santos
,
K.
van Stiphout
,
R.
Loo
,
W.
Vandervorst
, and
A.
Vantomme
, “
Interplay between relaxation and Sn segregation during thermal annealing of GeSn strained layers
,”
J. Appl. Phys.
120
(
14
),
145303
(
2016
).
48.
T.
Tsukamoto
,
N.
Hirose
,
A.
Kasamatsu
,
T.
Mimura
,
T.
Matsui
, and
Y.
Suda
, “
Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy
,”
Appl. Phys. Lett.
106
(
5
),
052103
(
2015
).
49.
W.
Wang
,
L.
Li
,
Q.
Zhou
,
J.
Pan
,
Z.
Zhang
,
E. S.
Tok
, and
Y.-C.
Yeo
, “
Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(001) substrate
,”
Appl. Surf. Sci.
321
,
240
244
(
2014
).
You do not currently have access to this content.