This paper determines all the 13 elastic constants Cij of monoclinic β-Ga2O3, which has never been achieved since the discovery of this crystal about 100 years ago. We used resonant ultrasound spectroscopy with laser-Doppler interferometry, where the resonant-mode identification was unambiguously made by comparing measured and calculated displacement distributions on the vibrating specimen surface. Using more than 110 resonance frequencies, we inversely determined the Cij: C11 = 242.8 ± 2.9, C22 = 343.8 ± 3.8, C33 = 347.4 ± 2.5, C44 = 47.8 ± 0.2, C55 = 88.6 ± 0.5, C66 = 104.0 ± 0.5, C12 = 128 ± 0.1, C13 = 160 ± 1.5, C23 = 70.9 ± 2.1, C15 = –1.62 ± 0.05, C25 = 0.36 ± 0.01, C35 = 0.97 ± 0.03, and C46 = 5.59 ± 0.69 GPa. We also performed a density-functional-theory calculation and found that the local density approximation yields both the lattice parameters and Cij closer to the measurements than the generalized gradient approximation. Strong elastic-stiffness anisotropy is found in the diagonal elastic constants: C11 is smaller than C22 and C33 by ∼30%, and the difference between C44 and C66 exceeds 50%. Our measurements also reveal anomalous Poisson's ratios: ν21 and ν31 exceed 0.5, and ν23 and ν32 are almost zero. We explain these unusual elastic properties with the truss-like deformation of the tetrahedra-octahedra network and confirm this view with the ab- initio calculation.

1.
V. M.
Goldschmidt
,
T. F. W.
Barth
, and
G.
Lunde
,
Skr. Nor. Vidensk.-Akad., Oslo I. Mat. -Naturvidensk. Kl.
7
,
24
(
1925
).
2.
L. M.
Foster
and
H. C.
Stumpf
,
J. Am. Chem. Soc.
73
,
1590
(
1951
).
3.
J. A.
Kohn
,
G.
Katz
, and
J. D.
Broder
,
Am. Miner.
42
,
398
(
1957
).
4.
S.
Geller
,
J. Chem. Phys.
33
,
676
(
1960
).
5.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B
74
,
195123
(
2006
).
6.
E. G.
Villora
,
K.
Shimamura
,
T.
Ujiie
, and
K.
Aoki
,
Appl. Phys. Lett.
92
,
202118
(
2008
).
7.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
8.
T.
Onuma
,
S.
Fujioka
,
T.
Yamaguchi
,
M.
Higashiwaki
,
K.
Sasaki
,
T.
Masui
, and
T.
Honda
,
Appl. Phys. Lett.
103
,
041910
(
2013
).
9.
H.
Peelaers
and
C. G.
Van de Walle
,
Phys. Status Solidi B
252
,
828
(
2015
).
10.
F.
Orlandi
,
F.
Mezzadri
,
G.
Calestani
,
F.
Boschi
, and
R.
Fornari
,
Appl. Phys. Express
8
,
111101
(
2015
).
11.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
,
Appl. Phys. Lett.
106
,
111909
(
2015
).
12.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
13.
B. J.
Baliga
,
J. Appl. Phys.
53
,
1759
(
1982
).
14.
S. L.
Wang
,
J. W.
Yu
,
P. C.
Yeh
,
H. W.
Kuo
,
L. H.
Peng
,
A. A.
Fedyanin
,
E. D.
Mishina
, and
A. S.
Sigov
,
Appl. Phys. Lett.
100
,
063506
(
2012
).
15.
J. W.
Yu
,
P. C.
Yeh
,
S. L.
Wang
,
Y. R.
Wu
,
M. H.
Mao
,
H. H.
Lin
, and
L. H.
Peng
,
Appl. Phys. Lett.
101
,
183501
(
2012
).
16.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Semicond. Sci. Technol.
31
,
034001
(
2016
).
17.
S.
Krishnamoorthy
,
Z.
Xia
,
S.
Bajaj
,
M.
Brenner
, and
S.
Rajan
,
Appl. Phys. Express
10
,
051102
(
2017
).
18.
E. G.
Villora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
,
J. Cryst. Growth
270
,
420
(
2004
).
19.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
,
Jpn. J. Appl. Phys., Part 1
47
,
8506
(
2008
).
20.
J. P.
Hebb
and
K. F.
Jensen
,
IEEE Trans. Semicond. Manuf.
11
,
99
(
1998
).
21.
A.
Toda
,
N.
Ikarashi
,
H.
Ono
,
S.
Ito
,
T.
Toda
, and
K.
Imai
,
Appl. Phys. Lett.
79
,
4243
(
2001
).
22.
K.
Ang
,
K.
Chui
,
V.
Bliznetsov
,
C.
Tung
,
A.
Du
,
N.
Balasubramanian
,
G.
Samudra
,
M.
Li
, and
Y.
Yeo
,
Appl. Phys. Lett.
86
,
093102
(
2005
).
23.
A. H.
Heuer
,
A.
Reddy
,
D. B.
Hovis
,
B.
Veal
,
A.
Paulikas
,
A.
Vlad
, and
M.
Rühle
,
Scr. Mater.
54
,
1907
(
2006
).
24.
I.
Koga
,
M.
Aruga
, and
Y.
Yoshinaka
,
Phys. Rev.
109
,
1467
(
1958
).
25.
R. T.
Smith
and
F. S.
Welsh
,
J. Appl. Phys.
42
,
2219
(
1971
).
26.
H.
Ogi
,
K.
Sato
,
T.
Asada
, and
M.
Hirao
,
J. Acoust. Soc. Am.
112
,
2553
(
2002
).
27.
H.
Ogi
,
Y.
Kawasaki
,
M.
Hirao
, and
H.
Ledbetter
,
J. Appl. Phys.
92
,
2451
(
2002
).
28.
H.
Ogi
,
N.
Nakamura
,
K.
Sato
,
M.
Hirao
, and
S.
Uda
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
553
(
2003
).
29.
H.
Ogi
,
M.
Fukunaga
,
M.
Hirao
, and
H.
Ledbetter
,
Phys. Rev. B
69
,
024104
(
2004
).
30.
H.
Ogi
,
T.
Ohmori
,
N.
Nakamura
, and
M.
Hirao
,
J. Appl. Phys.
100
,
053511
(
2006
).
31.
D. G.
Isaak
and
I.
Ohno
,
Phys. Chem. Miner.
30
,
430
(
2003
).
32.
E.
Mochizuki
,
J. Phys. Earth
35
,
159
(
1987
).
33.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
34.
L.
Fast
,
J. M.
Wills
,
B.
Johansson
, and
O.
Eriksson
,
Phys. Rev. B
51
,
17431
(
1995
).
35.
K.
Tanigaki
,
H.
Ogi
,
H.
Sumiya
,
K.
Kusakabe
,
N.
Nakamura
,
M.
Hirao
, and
H.
Ledbetter
,
Nat. Commun.
4
,
2343
(
2013
).
36.
A.
Nagakubo
,
H.
Ogi
,
H.
Sumiya
,
K.
Kusakabe
, and
M.
Hirao
,
Appl. Phys. Lett.
102
,
241909
(
2013
).
37.
L.
Levien
,
D. J.
Weidner
, and
C. T.
Prewitt
,
Phys. Chem. Miner.
4
,
105
(
1979
).
38.
J.
Kandelin
and
D. J.
Weidner
,
J. Geophys. Res.
93
,
1063
, (
1988
).
39.
S.
Shang
,
Y.
Wang
, and
Z.
Liu
,
Appl. Phys. Lett.
90
,
101909
(
2007
).
40.
M.
Blackman
, “
Specific heat of solids
,” in
Handbuch Der Physik 7/1
(
Springer
,
Berlin
,
1955
).
41.
O. L.
Anderson
,
J. Phys. Chem. Solids
24
,
909
(
1963
).
42.
H.
Ledbetter
and
S.
Kim
,
Handbook of Elastic Properties of Solids, Liquids, and Gases, Four-Volume Set 2
(
Academic Press
,
2000
), Chap. 7.

Supplementary Material

You do not currently have access to this content.