The stoichiometry and work function of molybdenum oxide (MoOx) are of crucial importance for its performance as hole selective contact for crystalline silicon solar cells. Hydrogenated amorphous silicon (a-Si:H) is typically used as an interface passivation layer in combination with MoOx to reduce surface recombination. As the fabrication process of a solar cell typically contains subsequent high-temperature processes, the consideration of thermal stability of MoOx with and without a-Si:H becomes critical. In this work, in situ x-ray spectroscopy (XPS)/ultraviolet photoelectron spectroscopy and Fourier transform infrared spectroscopy in the temperature range from 300 K to 900 K are used to investigate the thermal stability of MoOx with and without a-Si:H. In addition, both the passivation and contact performance are studied by evaluating the surface saturation current density J0s, carrier lifetime τeff, and contact resistivity ρc. The XPS results reveal that the as-evaporated MoOx on top of both c-Si and a-Si:H is sub-stoichiometric, and the work function of both films is higher than 6 eV. While after in situ annealing, the evolution of MoOx phase on top of a-Si:H shows a different behavior compared to it on c-Si which is attributed to H diffusion from a-Si:H after 600 K, whereas the work function shows a similar trend as a function of the annealing temperature. The J0s of a p-type Si symmetrically passivated by MoOx is found to be 187 fA/cm2 and the ρc is ∼82.5 mΩ·cm2 in the as-evaporated state. With a-Si interface passivation layer, J0s is significantly lower at 5.39 fA/cm2. The J0s and the ρc increase after post-deposition annealing. The evolution of these functional properties can be attributed to the material properties.

1.
M. A.
Green
,
IEEE Trans. Electron Devices
31
,
671
(
1984
).
2.
Z. C.
Holman
,
A.
Descoeudres
,
L.
Barraud
,
F. Z.
Fernandez
,
J. P.
Seif
,
S.
De Wolf
, and
C.
Ballif
,
IEEE J. Photovoltaics
2
,
7
(
2012
).
3.
M. J.
Kerr
,
A.
Cuevas
, and
P.
Campbell
,
Prog. Photovoltaics Res. Appl.
11
,
97
(
2003
).
4.
P.
Koswatta
,
M.
Boccard
, and
Z.
Holman
, in
IEEE 42nd Photovoltaics Specialist Conference PVSC
(IEEE,
2015
), p.
1
.
5.
Y.
Zhao
,
A. M.
Nardes
, and
K.
Zhu
,
Appl. Phys. Lett.
104
,
213906
(
2014
).
6.
S.
Murase
and
Y.
Yang
,
Adv. Mater.
24
,
2459
(
2012
).
7.
L. S.
Kumar
,
D. P.
Bhatt
, and
S.
Karthikeyan
,
J. Environ. Nanotechnol.
5
,
48
(
2016
).
8.
Z. L.
Tseng
,
L. C.
Chen
,
C. H.
Chiang
,
S. H.
Chang
,
C. C.
Chen
, and
C. G.
Wu
,
Sol. Energy
139
,
484
(
2016
).
9.
C. P.
Chen
,
Y. D.
Chen
, and
S. C.
Chuang
,
Adv. Mater.
23
,
3859
(
2011
).
10.
J.
Meyer
,
K.
Zilberberg
,
T.
Riedl
, and
A.
Kahn
,
J. Appl. Phys.
110
,
033710
(
2011
).
11.
P.
Qin
,
G.
Fang
,
N.
Sun
,
X.
Fan
,
Q.
Zheng
,
F.
Chen
,
J.
Wan
, and
X.
Zhao
,
Appl. Surf. Sci.
257
,
3952
(
2011
).
12.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
J. Appl. Phys.
71
,
4422
(
1992
).
13.
C.
Battaglia
,
S. M.
De Nicolás
,
S.
De Wolf
,
X.
Yin
,
M.
Zheng
,
C.
Ballif
, and
A.
Javey
,
Appl. Phys. Lett.
104
,
113902
(
2014
).
14.
C.
Battaglia
,
X.
Yin
,
M.
Zheng
,
I. D.
Sharp
,
T.
Chen
,
S.
Mcdonnell
,
A.
Azcatl
,
C.
Carraro
,
B.
Ma
,
R.
Maboudian
,
R. M.
Wallace
, and
A.
Javey
,
Nano Lett.
14
,
967
(
2014
).
15.
M.
Bivour
,
J.
Temmler
,
H.
Steinkemper
, and
M.
Hermle
,
Sol. Energy Mater. Sol. Cells
142
,
34
(
2015
).
16.
J.
Bullock
,
A.
Cuevas
,
T.
Allen
, and
C.
Battaglia
,
Appl. Phys. Lett.
105
,
232109
(
2014
).
17.
M. T.
Greiner
,
L.
Chai
,
M. G.
Helander
,
W. M.
Tang
, and
Z. H.
Lu
,
Adv. Funct. Mater.
22
,
4557
(
2012
).
18.
M. T.
Greiner
,
L.
Chai
,
M. G.
Helander
,
W. M.
Tang
, and
Z. H.
Lu
,
Adv. Funct. Mater.
23
,
215
(
2013
).
19.
J.
Geissbühler
,
J.
Werner
,
S.
Martin De Nicolas
,
L.
Barraud
,
A.
Hessler-Wyser
,
M.
Despeisse
,
S.
Nicolay
,
A.
Tomasi
,
B.
Niesen
,
S.
De Wolf
, and
C.
Ballif
,
Appl. Phys. Lett.
107
,
081601
(
2015
).
20.
M.
Bivour
,
B.
Macco
,
J.
Temmler
,
W. M. M. (E. ).
Kessels
, and
M.
Hermle
,
Energy Procedia
92
,
443
(
2016
).
21.
B.
Macco
,
M. F. J.
Vos
,
N. F. W.
Thissen
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Phys. Status Solidi RRL
9
,
393
(
2015
).
22.
J.
Yu
,
Y.
Fu
,
L.
Zhu
,
Z.
Yang
,
X.
Yang
,
L.
Ding
,
Y.
Zeng
,
B.
Yan
,
J.
Tang
,
P.
Gao
, and
J.
Ye
,
Sol. Energy
159
,
704
(
2018
).
23.
J.
Tong
,
Y.
Wan
,
J.
Cui
,
S.
Lim
,
N.
Song
, and
A.
Lennon
,
Appl. Surf. Sci.
423
,
139
(
2017
).
24.
L.
Neusel
,
M.
Bivour
, and
M.
Hermle
,
Energy Procedia
124
,
425
(
2017
).
25.
B.
Demaurex
,
S.
De Wolf
,
A.
Descoeudres
,
Z.
Charles Holman
, and
C.
Ballif
,
Appl. Phys. Lett.
101
,
171604
(
2012
).
26.
L.
Gerling
,
S.
Mahato
,
C.
Voz
,
R.
Alcubilla
, and
J.
Puigdollers
,
Appl. Sci.
5
,
695
(
2015
).
27.
N.
Alov
,
J. Surf. Invest. X-Ray, Synchrotron Neutron Tech.
8
,
247
(
2014
).
28.
T. J.
Driscoll
,
L. D.
McCormick
, and
W. C.
Lederer
,
Surf. Sci.
187
,
539
(
1987
).
29.
R. H.
Cox
and
H.
Strack
,
Solid State Electron.
10
,
1213
(
1967
).
30.
B.
Hoex
,
S. B. S.
Heil
,
E.
Langereis
,
M. C. M.
Van De Banden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
89
,
042112
(
2006
).
31.
J. G.
Choi
and
L. T.
Thompson
,
Appl. Surf. Sci.
93
,
143
(
1996
).
32.
M. F. J.
Vos
,
B.
Macco
,
N. F. W.
Thissen
,
A. A.
Bol
, and
W. M. M.
(Erwin) Kessels
,
J. Vac. Sci. Technol. A
34
,
01A103
(
2016
).
33.
F.
Werfel
and
E.
Minni
,
J. Phys. C
16
,
6091
(
1983
).
34.
D. O.
Scanlon
,
G. W.
Watson
,
D. J.
Payne
,
G. R.
Atkinson
,
R. G.
Egdell
, and
D. S. L.
Law
,
J. Phys. Chem. C
114
,
4636
(
2010
).
35.
L.
Salvatl
,
L. E.
Makovsky
,
J. M.
Stencel
,
F. R.
Brownls
, and
D. M.
Hercules
,
J. Phys. Chem.
85
,
3700
(
1981
).
36.
A. P.
Shpak
,
A. M.
Korduban
,
M. M.
Medvedskij
, and
V. O.
Kandyba
,
J. Electron Spectrosc. Relat. Phenom.
156–158
,
172
(
2007
).
37.
J.-C.
Dupin
,
D.
Gonbeau
,
P.
Vinatier
, and
A.
Levasseur
,
Phys. Chem. Chem. Phys.
2
,
1319
(
2000
).
38.
O.
Akhavan
,
R.
Azimirad
,
S.
Safa
, and
E.
Hasani
,
J. Mater. Chem.
21
,
9634
(
2011
).
39.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
40.
M.
Vasilopoulou
,
I.
Kostis
,
N.
Vourdas
,
G.
Papadimitropoulos
,
A.
Douvas
,
N.
Boukos
,
S.
Kennou
, and
D.
Davazoglou
,
J. Phys. Chem. C
118
,
12632
(
2014
).
41.
S.
Salimian
and
M.
Delfino
,
J. Appl. Phys.
70
,
3970
(
1991
).
42.
T.
Zhang
,
C.
Lee
,
B.
Gong
, and
S.
Lim
,
J. Vac. Sci. Technol. A
36
,
1
(
2018
).
43.
M.
Vasilopoulou
,
A.
Soultati
,
D. G.
Georgiadou
,
T.
Stergiopoulos
,
L. C.
Palilis
,
S.
Kennou
,
N. A.
Stathopoulos
,
D.
Davazoglou
, and
P.
Argitis
,
J. Mater. Chem. A
2
,
1738
(
2014
).
44.
V.
Naumann
,
M.
Otto
,
R. B.
Wehrspohn
,
M.
Werner
, and
C.
Hagendorf
,
Energy Procedia
27
,
312
(
2012
).
45.
J. P.
Ponpon
and
B.
Bourdon
,
Solid State Electron.
25
,
875
(
1982
).
46.
A.
Borgschulte
,
O.
Sambalova
,
R.
Delmelle
,
S.
Jenatsch
,
R.
Hany
, and
F.
Nüesch
,
Sci. Rep.
7
,
40761
(
2017
).
47.
K. B.
Koller
,
W. A.
Schmidt
, and
J. E.
Butler
,
J. Appl. Phys.
64
,
4704
(
1988
).
48.
C.-Y.
Lee
,
M. I. A.
Aziz
,
S.
Wenham
, and
B.
Hoex
,
Jpn. J. Appl. Phys., Part 1
56
,
08MA08
(
2017
).

Supplementary Material

You do not currently have access to this content.