We investigate the In content in single monolayer (ML)-thick InxGa1-xN quantum wells (QWs) as a function of the growth temperature ranging from 650 °C to 480 °C, stacked in a superlattice (SL). The SLs were grown by plasma-assisted molecular beam epitaxy using high N-flux. For the evaluation of the indium concentrations, scanning transmission electron microscopy high angle annular dark field (STEM-HAADF) studies were combined with local lattice parameter measurements obtained from high-resolution transmission electron microscopy (HRTEM) images. The mean In content in the QWs increases from 11% to 23% when the growth temperature decreases from 650 °C to 610 °C. Further decrease in the growth temperature results in a saturation of the mean In content. Our experiments show that a substantial reduction of the growth temperature is not a practical way to obtain pseudomorphically grown InN MLs on GaN(0001). The InGaN QW thickness is limited to 1 ML and is not affected by a change of growth temperature. For two SL structures grown at constant temperatures of 640 °C and 600 °C, increase in the In content in the QWs causes a shift in the peak emission from 382 to 395 nm, as was measured by cathodoluminescence at 7 K. The application of X-ray diffraction studies to analyze the composition of InGaN ML-thick QWs in SLs is discussed.

1.
H.
Morkoç
,
General Properties of Nitrides, Handbook of Nitride Semiconductors and Devices
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2009
), pp.
1
129
.
2.
J.
Wu
,
W.
Walukiewicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
 III
,
E. E.
Haller
,
H.
Lu
, and
W. J.
Schaff
,
Phys. Rev. B
66
,
201403
(
2002
).
3.
D.
Doppalapudi
,
S. N.
Basu
,
J. K. F.
Ludwig
, and
T. D.
Moustakas
,
J. Appl. Phys.
84
,
1389
1395
(
1998
).
4.
S.
Nakamura
,
Science
281
,
956
961
(
1998
).
5.
A.
Yoshikawa
,
S. B.
Che
,
W.
Yamaguchi
,
H.
Saito
,
X. Q.
Wang
,
Y.
Ishitani
, and
E. S.
Hwang
,
Appl. Phys. Lett.
90
,
073101
(
2007
).
6.
D.
Holec
,
Y.
Zhang
,
D. V. S.
Rao
,
M. J.
Kappers
,
C.
McAleese
, and
C. J.
Humphreys
,
J. Appl. Phys.
104
,
123514
(
2008
).
7.
A.
Yoshikawa
,
S. B.
Che
,
N.
Hashimoto
,
H.
Saito
,
Y.
Ishitani
, and
X. Q.
Wang
,
J. Vac. Sci. Technol. B
26
,
1551
1559
(
2008
).
8.
E.
Dimakis
,
A. Y.
Nikiforov
,
C.
Thomidis
,
L.
Zhou
,
D. J.
Smith
,
J.
Abell
,
C. K.
Kao
, and
T. D.
Moustakas
,
Phys. Status Solidi (a)
205
,
1070
1073
(
2008
).
9.
G.
Staszczak
,
I.
Gorczyca
,
T.
Suski
,
X. Q.
Wang
,
N. E.
Christensen
,
A.
Svane
,
E.
Dimakis
, and
T. D.
Moustakas
,
J. Appl. Phys.
113
,
123101
(
2013
).
10.
C.
Chèze
,
M.
Siekacz
,
F.
Isa
,
B.
Jenichen
,
F.
Feix
,
J.
Buller
,
T.
Schulz
,
M.
Albrecht
,
C.
Skierbiszewski
,
R.
Calarco
, and
H.
Riechert
,
J. Appl. Phys.
120
,
125307
(
2016
).
11.
A.
Yoshikawa
,
K.
Kusakabe
,
N.
Hashimoto
,
E.-S.
Hwang
,
D.
Imai
, and
T.
Itoi
,
J. Appl. Phys.
120
,
225303
(
2016
).
12.
I.
Gorczyca
,
T.
Suski
,
G.
Staszczak
,
X. Q.
Wang
,
N. E.
Christensen
,
A.
Svane
,
E.
Dimakis
, and
T. D.
Moustakas
,
Phys. Status Solidi (c)
11
,
678
681
(
2014
).
13.
I.
Gorczyca
,
T.
Suski
,
P.
Strak
,
G.
Staszczak
, and
N. E.
Christensen
,
Sci. Rep.
7
,
16055
(
2017
).
14.
T.
Suski
,
T.
Schulz
,
M.
Albrecht
,
X. Q.
Wang
,
I.
Gorczyca
,
K.
Skrobas
,
N. E.
Christensen
, and
A.
Svane
,
Appl. Phys. Lett.
104
,
182103
(
2014
).
15.
A. I.
Duff
,
L.
Lymperakis
, and
J.
Neugebauer
,
Phys. Rev. B
89
,
085307
(
2014
).
16.
S. M.
Hamad
,
D. P.
Norman
,
Q. Y.
Chen
,
F.
Keles
, and
H. W.
Seo
,
AIP Adv.
3
,
072128
(
2013
).
17.
H.
Chen
,
J. Vac. Sci. Technol. B
18
,
2284
(
2000
).
18.
C.
Chèze
,
F.
Feix
,
M.
Anikeeva
,
T.
Schulz
,
M.
Albrecht
,
H.
Riechert
,
O.
Brandt
, and
R.
Calarco
,
Appl. Phys. Lett.
110
,
072104
(
2017
).
19.
L.
Lymperakis
,
T.
Schulz
,
C.
Freysoldt
,
M.
Anikeeva
,
Z.
Chen
,
X.
Zheng
,
B.
Shen
,
C.
Chèze
,
M.
Siekacz
,
X. Q.
Wang
,
M.
Albrecht
, and
J.
Neugebauer
,
Phys. Rev. Mater.
2
,
011601
(
2018
).
20.
T.
Schulz
,
A.
Duff
,
T.
Remmele
,
M.
Korytov
,
T.
Markurt
,
M.
Albrecht
,
L.
Lymperakis
,
J.
Neugebauer
,
C.
Chèze
, and
C.
Skierbiszewski
,
J. Appl. Phys.
115
,
033113
(
2014
).
21.
C.
Skierbiszewski
,
Z. R.
Wasilewski
,
I.
Grzegory
, and
S.
Porowski
,
J. Cryst. Growth
311
,
1632
1639
(
2009
).
22.
M.
Siekacz
,
M. Ł.
Szańkowska
,
A.
Feduniewicz-Żmuda
,
J.
Smalc-Koziorowska
,
G.
Cywiński
,
S.
Grzanka
,
Z. R.
Wasilewski
,
I.
Grzegory
,
B.
Łucznik
,
S.
Porowski
, and
C.
Skierbiszewski
,
Phys. Status Solidi C
6
,
S917
(
2009
).
23.
J.
Karpiński
,
J.
Jun
, and
S.
Porowski
,
J. Cryst. Growth
66
,
1
10
(
1984
).
24.
H.
Turski
,
M.
Siekacz
,
Z. R.
Wasilewski
,
M.
Sawicka
,
S.
Porowski
, and
C.
Skierbiszewski
,
J. Cryst. Growth
367
,
115
121
(
2013
).
25.
C.
Skierbiszewski
,
M.
Siekacz
,
H.
Turski
,
G.
Muziol
,
M.
Sawicka
,
P.
Perlin
,
Z. R.
Wasilewski
, and
S.
Porowski
,
J. Cryst. Growth
378
,
278
282
(
2013
).
26.
M.
Siekacz
,
M.
Sawicka
,
H.
Turski
,
G.
Cywiński
,
A.
Khachapuridze
,
P.
Perlin
,
T.
Suski
,
M.
Boćkowski
,
J.
Smalc-Koziorowska
,
M.
Kryśko
,
R.
Kudrawiec
,
M.
Syperek
,
J.
Misiewicz
,
Z. R.
Wasilewski
,
S.
Porowski
, and
C.
Skierbiszewski
,
J. Appl. Phys.
110
,
063110
(
2011
).
27.
A.
Rosenauer
,
K.
Gries
,
K.
Müller
,
A.
Pretorius
,
M.
Schowalter
,
A.
Avramescu
,
K.
Engl
, and
S.
Lutgen
,
Ultramicroscopy
109
,
1171
1182
(
2009
).
28.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
,
Nat. Methods
9
,
671
675
(
2012
).
29.
E.
Carlino
,
S.
Modesti
,
D.
Furlanetto
,
M.
Piccin
,
S.
Rubini
, and
A.
Franciosi
,
Appl. Phys. Lett.
83
,
662
664
(
2003
).
30.
R.
Averbeck
and
H.
Riechert
,
Phys. Status Solidi (a)
176
,
301
305
(
1999
).
31.
C. S.
Gallinat
,
G.
Koblmuller
,
J. S.
Brown
, and
J. S.
Speck
,
J. Appl. Phys.
102
,
064907
(
2007
).
32.
N.
Grandjean
,
J.
Massies
,
F.
Semond
,
S. Y.
Karpov
, and
R. A.
Talalaev
,
Appl. Phys. Lett.
74
,
1854
1856
(
1999
).
33.
H.
Lu
,
W. J.
Schaff
,
L. F.
Eastman
, and
C. E.
Stutz
,
Appl. Phys. Lett.
82
,
1736
1738
(
2003
).
34.
M. S.
Miao
,
Q. M.
Yan
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
102
,
102103
(
2013
).
You do not currently have access to this content.