A small cross-section of silver nanoparticles (AgNPs) placed at the rear-part of the solar cell avoids the parasitic absorption of the nanoparticles which is the biggest barrier for plasmonic structures when acting as photocurrent enhancers. Herein, we demonstrate p-i-n planar perovskite solar cells with the structure ITO/PEDOT:PSS/MAPbI3/PCBM/Ni:Au, where the PCBM electron extraction layer (EEL) was intentionally modified with variable amounts of AgNPs. The addition of small amounts of AgNPs (e.g., 5 wt. %) into the PCBM improved the overall reproducibility and reliability of the solar cell fabrication process after optimization. Plasmonic simulations suggest that any plasmonic-optical effects are relatively small compared to sample absorbance due to perovskite alone. It has been concluded that plasmonic-electrical effects play a major role in averaged performance improvement. Therefore, the addition of small AgNPs in low concentration to the EEL layer accounts for higher Jsc, Voc and FF as a result of a better perovskite coverage by the EEL and an improved charge carrier collection as evidenced by morphological and electrical analysis.

1.
W. S.
Yang
,
B.-W.
Park
,
E. H.
Jung
,
N. J.
Jeon
,
Y. C.
Kim
,
D. U.
Lee
,
S. S.
Shin
,
J.
Seo
,
E. K.
Kim
,
J. H.
Noh
, and
S. I.
Seok
,
Science
356
,
1376
1379
(
2017
).
2.
W.-J.
Yin
,
J.-H.
Yang
,
J.
Kang
,
Y.
Yan
, and
S.-H.
Wei
,
J. Mater. Chem. A
3
,
8926
8942
(
2015
).
3.
Y.
Rong
,
L.
Liu
,
A.
Mei
,
X.
Li
, and
H.
Han
,
Adv. Energy Mater.
5
,
1501066
(
2015
).
4.
G.
Niu
,
X.
Guo
, and
L.
Wang
,
J. Mater. Chem. A
3
,
8970
8980
(
2015
).
5.
H.
Kim
,
K.-G.
Lim
, and
T.-W.
Lee
,
Energy Environ. Sci.
9
,
12
30
(
2016
).
6.
J. H.
Heo
,
H. J.
Han
,
D.
Kim
,
T. K.
Ahn
, and
S. H.
Im
,
Energy Environ. Sci.
8
,
1602
1608
(
2015
).
7.
C.-H.
Chiang
and
C.-G.
Wu
,
Nat. Photonics
10
,
196
(
2016
).
8.
Y.
Shao
,
Z.
Xiao
,
C.
Bi
,
Y.
Yuan
, and
J.
Huang
,
Nat. Commun.
5
,
5784
(
2014
).
9.
S.
Sutthana
,
K.
Hongsith
,
P.
Ruankham
,
D.
Wongratanaphisan
,
A.
Gardchareon
,
S.
Phadungdhitidhada
,
D.
Boonyawan
,
P.
Kumnorkaew
,
A.
Tuantranont
, and
S.
Choopun
,
Curr. Appl. Phys.
17
,
488
494
(
2017
).
10.
F.
Xia
,
Q.
Wu
,
P.
Zhou
,
Y.
Li
,
X.
Chen
,
Q.
Liu
,
J.
Zhu
,
S.
Dai
,
Y.
Lu
, and
S.
Yang
,
ACS Appl. Mater. Interfaces
7
,
13659
13665
(
2015
).
11.
C.-Y.
Chang
,
W.-K.
Huang
,
Y.-C.
Chang
,
K.-T.
Lee
, and
C.-T.
Chen
,
J. Mater. Chem. A
4
,
640
648
(
2016
).
12.
Y.
Bai
,
H.
Yu
,
Z.
Zhu
,
K.
Jiang
,
T.
Zhang
,
N.
Zhao
,
S.
Yang
, and
H.
Yan
,
J. Mater. Chem. A
3
,
9098
9102
(
2015
).
13.
H.-K.
Lin
,
Y.-W.
Su
,
H.-C.
Chen
,
Y.-J.
Huang
, and
K.-H.
Wei
,
ACS Appl. Mater. Interfaces
8
,
24603
24611
(
2016
).
14.
J.-L.
Wu
,
F.-C.
Chen
,
Y.-S.
Hsiao
,
F.-C.
Chien
,
P.
Chen
,
C.-H.
Kuo
,
M. H.
Huang
, and
C.-S.
Hsu
,
ACS Nano
5
,
959
967
(
2011
).
15.
S.-S.
Kim
,
S.-I.
Na
,
J.
Jo
,
D.-Y.
Kim
, and
Y.-C.
Nah
,
Appl. Phys. Lett.
93
,
073307
(
2008
).
16.
G.
Kakavelakis
,
K.
Petridis
, and
E.
Kymakis
,
J. Mater. Chem. A
5
,
21604
21624
(
2017
).
17.
C.
Petridis
,
K.
Savva
,
E.
Kymakis
, and
E.
Stratakis
,
J. Colloid Interface Sci.
489
,
28
37
(
2017
).
18.
K.
Chan
,
M.
Wright
,
N.
Elumalai
,
A.
Uddin
, and
S.
Pillai
,
Adv. Opt. Mater.
5
,
1600698
(
2017
).
19.
N.
Ahn
,
D.-Y.
Son
,
I.-H.
Jang
,
S. M.
Kang
,
M.
Choi
, and
N.-G.
Park
,
J. Am. Chem. Soc.
137
,
8696
8699
(
2015
).
20.
Y.
Guo
,
K.
Shoyama
,
W.
Sato
,
Y.
Matsuo
,
K.
Inoue
,
K.
Harano
,
C.
Liu
,
H.
Tanaka
, and
E.
Nakamura
,
J. Am. Chem. Soc.
137
,
15907
15914
(
2015
).
21.
T.
Baikie
,
Y.
Fang
,
J. M.
Kadro
,
M.
Schreyer
,
F.
Wei
,
S. G.
Mhaisalkar
,
M.
Graetzel
, and
T. J.
White
,
J. Mater. Chem. A
1
,
5628
5641
(
2013
).
22.
S.
Luo
and
W. A.
Daoud
,
Materials
9
,
123
(
2016
).
23.
C.
Quarti
,
E.
Mosconi
,
J. M.
Ball
,
V.
D'Innocenzo
,
C.
Tao
,
S.
Pathak
,
H. J.
Snaith
,
A.
Petrozza
, and
F.
De Angelis
,
Energy Environ. Sci.
9
,
155
163
(
2016
).
24.
K.
Chan
,
M.
Wright
,
N.
Elumalai
,
A.
Uddin
, and
S.
Pillai
,
Adv. Opt. Mater.
5
,
1600698
(
2017
).
25.
S.
Carretero-Palacios
,
A.
Jiménez-Solano
, and
H.
Míguez
,
ACS Energy Lett.
1
,
323
331
(
2016
).
26.
M.
Notarianni
,
K.
Vernon
,
A.
Chou
,
M.
Aljada
,
J.
Liu
, and
N.
Motta
,
Sol. Energy
106
,
23
37
(
2014
).
27.
G.
Kakavelakis
,
I.
Vangelidis
,
A.
Heuer-Jungemann
,
A. G.
Kanaras
,
E.
Lidorikis
,
E.
Stratakis
, and
E.
Kymakis
,
Adv. Energy Mater.
6
,
1501640
(
2016
).
28.
U.
Hohenester
and
A.
Trügler
,
Comput. Phys. Commun.
183
,
370
381
(
2012
).
29.
J.
Waxenegger
,
A.
Trügler
, and
U.
Hohenester
,
Comput. Phys. Commun.
193
,
138
150
(
2015
).
30.
R. B.
Dunbar
,
T.
Pfadler
, and
L.
Schmidt-Mende
,
Opt. Express
20
,
A177
A189
(
2012
).
31.
J. H.
Lee
,
J. H.
Park
,
J. S.
Kim
,
D. Y.
Lee
, and
K.
Cho
,
Org. Electron.
10
,
416
420
(
2009
).
32.
J. C.
Franco
,
G.
Gonçalves
,
M. S.
Souza
,
S. B.
Rosa
,
L. M.
Thiegue
,
T. D.
Atvars
,
P. T.
Rosa
, and
R. A.
Nome
,
Opt. Express
21
,
30874
30885
(
2013
).
33.
F. J.
Quites
,
R. A.
Domingues
,
G. F.
Ferbonink
,
R. A.
Nome
, and
T. D. Z.
Atvars
,
Eur. Polym. J.
49
,
693
705
(
2013
).
34.
W. C.
Choy
and
X.
Ren
,
IEEE J. Sel. Top. Quantum Electron.
22
,
1
9
(
2016
).
35.
D. D.
Fung
,
L.
Qiao
,
W. C.
Choy
,
C.
Wang
,
E.
Wei
,
F.
Xie
, and
S.
He
,
J. Mater. Chem.
21
,
16349
16356
(
2011
).
36.
S. W.
Baek
,
J.
Hun Kim
,
J.
Kang
,
H.
Lee
,
J.
Young Park
, and
J. Y.
Lee
,
Adv. Energy Mater.
5
,
1501393
(
2015
).
37.
F.
Ely
,
T. C.
Cipriano
,
M. O.
da Silva
,
V. S.
Peressinotto
, and
W. A.
Alves
,
RSC Adv.
6
,
32171
32175
(
2016
).
38.
Y.
Li
,
B.
Ding
,
Q.-Q.
Chu
,
G.-J.
Yang
,
M.
Wang
,
C.-X.
Li
, and
C.-J.
Li
,
Sci. Rep.
7
,
46141
(
2017
).

Supplementary Material

You do not currently have access to this content.