Two-dimensional (2D) materials and van der Waals heterostructures can naturally function as directional heat spreaders in nanoelectronics due to their intrinsically anisotropic structure. In real nanoelectronic applications, disorders usually appear in those materials where their effects on anisotropic thermal conductivity are not well-understood. We built simple graphite-like material models and systematically incorporated mass disorder or structural disorder into the structures. The anisotropic thermal conductivities calculated by equilibrium molecular dynamics simulations show that mass disorder and stacking disorder can effectively and anisotropically tune the thermal conductivity of 2D materials and van der Waals heterostructures. Compared with pristine graphite, the through-plane thermal conductivity can be reduced up to two orders of magnitude by the through-plane mass disorder, and the thermal anisotropy ratio (i.e., the ratio of in-plane to through-plane thermal conductivity) can be enhanced more than ten times. We attribute this counter-intuitive result to the dramatic decrease in phonon group velocity in the through-plane direction. Our results can shed some light on the thermal management in electronics incorporating 2D materials and van der Waals heterostructures.

1.
L.
Zhong
,
R. C.
Bruno
,
K.
Ethan
,
L.
Ruitao
,
R.
Rahul
,
T.
Humberto
,
A. P.
Marcos
, and
T.
Mauricio
,
2D Mater.
3
,
022002
(
2016
).
2.
J.-C.
Zheng
,
L.
Zhang
,
A. V.
Kretinin
,
S. V.
Morozov
,
Y. B.
Wang
,
T.
Wang
,
X.
Li
,
F.
Ren
,
J.
Zhang
, and
C.-Y.
Lu
,
2D Mater.
3
,
011004
(
2016
).
3.
F.
Withers
,
O.
Del Pozo-Zamudio
,
A.
Mishchenko
,
A. P.
Rooney
,
A.
Gholinia
,
K.
Watanabe
,
T.
Taniguchi
,
S. J.
Haigh
,
A. K.
Geim
,
A. I.
Tartakovskii
, and
K. S.
Novoselov
,
Nat. Mater.
14
,
301
(
2015
).
4.
D.
Jariwala
,
T. J.
Marks
, and
M. C.
Hersam
,
Nat. Mater.
16
,
170
(
2017
).
5.
X.
Li
and
H.
Zhu
,
J. Materiomics
1
,
33
(
2015
).
6.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
7.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
8.
A.
Pant
,
Z.
Mutlu
,
D.
Wickramaratne
,
H.
Cai
,
R. K.
Lake
,
C.
Ozkan
, and
S.
Tongay
,
Nanoscale
8
,
3870
(
2016
).
9.
A. C.
Ferrari
,
F.
Bonaccorso
,
V.
Fal'Ko
,
K. S.
Novoselov
,
S.
Roche
,
P.
Bøggild
,
S.
Borini
,
F. H.
Koppens
,
V.
Palermo
, and
N.
Pugno
,
Nanoscale
7
,
4598
(
2015
).
10.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
,
MRS Bull.
37
,
1273
(
2012
).
11.
X.
Tian
,
M. E.
Itkis
,
E. B.
Bekyarova
, and
R. C.
Haddon
,
Sci. Rep.
3
,
1710
(
2013
).
12.
H.
Mizuno
,
S.
Mossa
, and
J.-L.
Barrat
,
Sci. Rep.
5
,
14116
(
2015
).
13.
H.
Alam
and
S.
Ramakrishna
,
Nano Energy
2
,
190
(
2013
).
14.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'quinn
,
Nature
413
,
597
(
2001
).
15.
J.
He
,
K.
Kim
,
Y.
Wang
, and
J.
Liu
,
Appl. Phys. Lett.
112
,
051907
(
2018
).
16.
X.
Qian
,
X.
Gu
,
M. S.
Dresselhaus
, and
R.
Yang
,
J. Phys. Chem. Lett.
7
,
4744
(
2016
).
17.
J. S.
Kang
,
M.
Ke
, and
Y.
Hu
,
Nano Lett.
17
,
1431
(
2017
).
18.
F.
Xiong
,
H.
Wang
,
X.
Liu
,
J.
Sun
,
M.
Brongersma
,
E.
Pop
, and
Y.
Cui
,
Nano Lett.
15
,
6777
(
2015
).
19.
G.
Zhu
,
J.
Liu
,
Q.
Zheng
,
R.
Zhang
,
D.
Li
,
D.
Banerjee
, and
D. G.
Cahill
,
Nat. Commun.
7
,
13211
(
2016
).
20.
J.
Wan
,
S. D.
Lacey
,
J.
Dai
,
W.
Bao
,
M. S.
Fuhrer
, and
L.
Hu
,
Chem. Soc. Rev.
45
,
6742
(
2016
).
21.
Y.-H.
Choi
,
D.-H.
Lim
,
J.-H.
Jeong
,
D.
Park
,
K.-S.
Jeong
,
M.
Kim
,
A.
Song
,
H.-S.
Chung
,
K.-B.
Chung
,
Y.
Yi
, and
M.-H.
Cho
,
ACS Appl. Mater. Interfaces
9
,
30786
(
2017
).
22.
C.
Dean
,
L.
Wang
,
P.
Maher
,
C.
Forsythe
,
F.
Ghahari
,
Y.
Gao
,
J.
Katoch
,
M.
Ishigami
,
P.
Moon
, and
M.
Koshino
,
Nature
497
,
598
(
2013
).
23.
M.
Flores
,
E.
Cisternas
,
J.
Correa
, and
P.
Vargas
,
Chem. Phys.
423
,
49
(
2013
).
24.
J.
Jasinski
,
S.
Dumpala
,
G.
Sumanasekera
,
M.
Sunkara
, and
P.
Ouseph
,
Appl. Phys. Lett.
99
,
073104
(
2011
).
25.
M.
Pimenta
,
G.
Dresselhaus
,
M. S.
Dresselhaus
,
L.
Cancado
,
A.
Jorio
, and
R.
Saito
,
Phys. Chem. Chem. Phys.
9
,
1276
(
2007
).
26.
K.
Kim
,
M.
Yankowitz
,
B.
Fallahazad
,
S.
Kang
,
H. C.
Movva
,
S.
Huang
,
S.
Larentis
,
C. M.
Corbet
,
T.
Taniguchi
, and
K.
Watanabe
,
Nano Lett.
16
,
1989
(
2016
).
27.
L.
Liu
,
J.
Park
,
D. A.
Siegel
,
K. F.
McCarty
,
K. W.
Clark
,
W.
Deng
,
L.
Basile
,
J. C.
Idrobo
,
A.-P.
Li
, and
G.
Gu
,
Science
343
,
163
(
2014
).
28.
Q.
Li
,
M.
Liu
,
Y.
Zhang
, and
Z.
Liu
,
Small
12
,
32
(
2016
).
29.
Z.
Ding
,
Q.-X.
Pei
,
J.-W.
Jiang
,
W.
Huang
, and
Y.-W.
Zhang
,
Carbon
96
,
888
(
2016
).
30.
W.
Wei
,
Y.
Dai
, and
B.
Huang
,
Phys. Chem. Chem. Phys.
19
,
663
(
2017
).
31.
N. A.
Kumar
,
M. A.
Dar
,
R.
Gul
, and
J.-B.
Baek
,
Mater. Today
18
,
286
(
2015
).
32.
Z.
Zhang
,
S.
Hu
,
J.
Chen
, and
B.
Li
,
Nanotechnology
28
,
225704
(
2017
).
33.
Z.
Chen
,
J.
Biscaras
, and
A.
Shukla
,
2D Mater.
4
,
025115
(
2017
).
34.
W.
Zhang
,
Q.
Wang
,
Y.
Chen
,
Z.
Wang
, and
A. T.
Wee
,
2D Mater.
3
,
022001
(
2016
).
35.
Y.
Gong
,
J.
Lin
,
X.
Wang
,
G.
Shi
,
S.
Lei
,
Z.
Lin
,
X.
Zou
,
G.
Ye
,
R.
Vajtai
, and
B. I.
Yakobson
,
Nat. Mater.
13
,
1135
(
2014
).
36.
V.
NanoLab
, www.quantumwise.com for QuantumWise A/S.
37.
P.
Trucano
and
R.
Chen
,
Nature
258
,
136
(
1975
).
38.
J. M.
Campanera
,
G.
Savini
,
I.
Suarez-Martinez
, and
M. I.
Heggie
,
Phys. Rev. B
75
,
235449
(
2007
).
39.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
40.
L.
Lindsay
and
D. A.
Broido
,
Phys. Rev. B
81
,
205441
(
2010
).
41.
Z.
Wei
,
J.
Yang
,
W.
Chen
,
K.
Bi
,
D.
Li
, and
Y.
Chen
,
Appl. Phys. Lett.
104
,
081903
(
2014
).
42.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
43.
L.
Li
and
G. E.
Caldwell
,
J. Electromyogr. Kinesiol.
9
,
385
(
1999
).
44.
Z.
Wang
and
X.
Ruan
,
J. Appl. Phys.
121
,
044301
(
2017
).
45.
J.
Chen
,
G.
Zhang
, and
B.
Li
,
Phys. Lett. A
374
,
2392
(
2010
).
46.
Z.
Wang
,
S.
Safarkhani
,
G.
Lin
, and
X.
Ruan
,
Int. J. Heat Mass Transfer
112
,
267
(
2017
).
47.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
48.
J. P.
Feser
and
D. G.
Cahill
,
Rev. Sci. Instrum.
83
,
104901
(
2012
).
49.
L.
Lindsay
,
D.
Broido
, and
N.
Mingo
,
Phys. Rev. B
83
,
235428
(
2011
).
50.
Z.
Liang
,
A.
Jain
,
A. J.
McGaughey
, and
P.
Keblinski
,
J. Appl. Phys.
118
,
125104
(
2015
).
51.
L.
Lindsay
,
D.
Broido
, and
T.
Reinecke
,
Phys. Rev. Lett.
111
,
025901
(
2013
).
52.
T.
Zhu
and
E.
Ertekin
,
Phys. Rev. B
90
,
195209
(
2014
).
53.
R.
Mao
,
Y.
Chen
, and
K. W.
Kim
,
J. Appl. Phys.
119
,
204305
(
2016
).
54.
P. E.
Hopkins
,
P. M.
Norris
,
M. S.
Tsegaye
, and
A. W.
Ghosh
,
J. Appl. Phys.
106
,
063503
(
2009
).
55.
L.
Chao
,
Z.
Peng
, and
Z.
David Wei
,
J. Semicond.
38
,
031005
(
2017
).
56.
P.
Ajayan
,
P.
Kim
, and
K.
Banerjee
,
Phys. Today
69
(
9
),
38
(
2016
).
57.
J. D.
Gale
,
J. Chem. Soc. Faraday Trans.
93
,
629
(
1997
).
58.
L.
Xiong
,
X.
Chen
,
N.
Zhang
,
D.
McDowell
, and
Y.
Chen
,
Arch. Appl. Mech.
84
,
1665
(
2014
).
59.
J.
Turney
,
E.
Landry
,
A.
McGaughey
, and
C.
Amon
,
Phys. Rev. B
79
,
064301
(
2009
).
60.
A.
McGaughey
and
J. M.
Larkin
,
Annu. Rev. Heat Transfer
17
,
49
(
2014
).
61.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
(
2014
).
62.
Y.
Wang
,
C.
Gu
, and
X.
Ruan
,
Appl. Phys. Lett.
106
,
073104
(
2015
).
63.
C. A.
Polanco
,
R.
Rastgarkafshgarkolaei
,
J.
Zhang
,
N. Q.
Le
,
P. M.
Norris
, and
A. W.
Ghosh
,
Phys. Rev. B
95
,
195303
(
2017
).
You do not currently have access to this content.