We have developed a simulation tool in which structural or chemical modifications of an adsorbed molecular layer can be interactively performed, and where structural relaxation and nearly real-time evaluation of a scanning tunneling microscopy (STM) image are considered. This approach is built from an optimized integration of the atomic superposition and electron delocalization molecular orbital theory (ASED-MO) to which a van der Waals correction term is added in conjunction with a non-linear optimization algorithm based on the Broyden-Fletcher-Goldfarb-Shanno method. This integrated approach provides reliable optimized geometries for adsorbed species on metallic surfaces in a reasonable time. Although we performed a major revision of the ASED-MO parameters, the proposed computational approach can accurately reproduce the geometries of a various amount of covalent molecules and weakly bonded complexes contained in two well-defined datasets. More importantly, the relaxation of adsorbed species on a metal surface leads to molecular geometries in good agreement with experimental and Density Functional Theory results. From this, the electronic structure obtained from ASED-MO is used to compute the STM image of the system nearly in real-time using the Tersoff-Hamann formalism. We developed a parallelization strategy that uses Graphics Processing Units to reduce the computing time of STM simulation by a factor of 30. Such improvements allow one to simulate STM images of large supramolecular arrangements and to investigate the influence of realistic local chemical or structural defects on metal surfaces.

1.
D. M.
Eigler
and
E. K.
Schweizer
,
Nature
344
,
524
(
1990
).
2.
J. A.
Stroscio
and
D. M.
Eigler
,
Science
254
(
5036
),
1319
(
1991
).
3.
M. F.
Crommie
,
C. P.
Lutz
, and
D. M.
Eigler
,
Science
262
,
218
(
1993
).
4.
L.
Grill
,
K.-H.
Rieder
,
F.
Moresco
,
G.
Rapenne
,
S.
Stojkovic
,
X.
Bouju
, and
C.
Joachim
,
Nat. Nanotechnol.
2
,
95
(
2007
).
5.
P.
Sautet
,
J. C.
Dunphy
, and
M.
Salmeron
,
Surf. Sci.
364
,
335
(
1996
).
6.
I. S.
Tilinin
,
M. K.
Rose
,
J. C.
Dunphy
,
M.
Salmeron
, and
M. A.
Van Hove
,
Surf. Sci.
418
,
511
(
1998
).
8.
P.
Sautet
and
M. L.
Bocquet
,
Phys. Rev. B
53
,
4910
(
1996
).
9.
M. L.
Bocquet
and
P.
Sautet
,
Surf. Sci.
360
,
128
(
1996
).
10.
M. L.
Bocquet
,
J.
Cerdà
, and
P.
Sautet
,
Phys. Rev. B
59
,
15437
(
1999
).
11.
Ó.
Paz
,
I.
Brihuega
,
J. M.
Gómez-Rodríguez
, and
J. M.
Soler
,
Phys. Rev. Lett.
94
,
056103
(
2005
).
12.
S.
Bedwani
,
D.
Wegner
,
M.
Crommie
, and
A.
Rochefort
,
Phys. Rev. Lett.
101
,
216105
(
2008
).
13.
14.
W.
Ho
,
Acc. Chem. Res.
31
,
567
(
1998
).
16.
P.
Hapala
,
G.
Kichin
,
C.
Wagner
,
F. S.
Tautz
,
R.
Temirov
, and
P.
Jelínek
,
Phys. Rev. B
90
,
085421
(
2014
).
17.
P.
Hapala
,
R.
Temirov
,
F. S.
Tautz
, and
P.
Jelínek
,
Phys. Rev. Lett.
113
,
226101
(
2014
).
18.
O.
Krejčí
,
P.
Hapala
,
M.
Ondráček
, and
P.
Jelínek
,
Phys. Rev. B
95
,
045407
(
2017
).
19.
P.
Jelínek
,
J. Phys.: Condens. Matter
29
,
343002
(
2017
).
20.
X.
Bouju
,
C.
Joachim
, and
C.
Girard
,
Phys. Rev. B
59
,
R7845(R)
(
1999
).
21.
P.
Sautet
and
C.
Joachim
,
Chem. Phys. Lett.
185
,
23
(
1991
).
22.
L.
Pizzagalli
,
C.
Joachim
,
X.
Bouju
, and
C.
Girard
,
EPL (Europhys. Lett.)
38
,
97
(
1997
).
23.
X.
Bouju
,
C.
Girard
,
H.
Tang
,
C.
Joachim
, and
L.
Pizzagalli
,
Phys. Rev. B
55
,
16498
16506
(
1997
).
24.
X.
Bouju
,
C.
Joachim
,
C.
Girard
, and
H.
Tang
,
Phys. Rev. B
63
,
085415
(
2001
).
25.
N.
Boulanger-Lewandowski
and
A.
Rochefort
,
Phys. Rev. B
83
,
115430
(
2011
).
26.
M.
Alemani
,
M. V.
Peters
,
S.
Hecht
,
K.-H.
Rieder
,
F.
Moresco
, and
L.
Grill
,
J. Am. Chem. Soc.
128
,
14446
(
2006
).
27.
X.
Bouju
,
M.
Devel
, and
C.
Girard
,
Appl. Phys. A
66
,
S749
(
1998
).
28.
S.-W.
Hla
,
J. Vac. Sci. Technol. B
23
,
1351
(
2005
).
29.
G. M.
Battle
,
F. H.
Allen
, and
G. M.
Ferrence
,
J. Chem. Educ.
87
,
809
(
2010
).
30.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
31.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
2365
(
2010
).
32.
G.
Zhan
,
M.-A.
Dubois
,
Y.
Makoudi
,
S.
Lamare
,
J.
Jeannoutot
,
X.
Bouju
,
A.
Rochefort
,
F.
Palmino
, and
F.
Chérioux
,
J. Phys. Chem. C
121
,
8427
(
2017
).
33.
R.
Hoffmann
,
J. Chem. Phys.
39
,
1397
(
1963
).
34.
T. A.
Albright
,
J. K.
Burdett
, and
M. H.
Whangbo
,
Orbital Interactions in Chemistry
(
John Wiley and Sons
,
New York, Chichester, Brisbane, Toronto, Singapore
,
1985
).
35.
C. A.
Ballhausen
and
H. B.
Gray
,
Molecular Orbital Theory: An Introductory Lecture Note and Reprint Volume
(
Cambridge University Press
,
1965
).
36.
G.
Calzaferri
,
L.
Forss
, and
I.
Kamber
,
J. Phys. Chem.
93
,
5366
(
1989
).
37.
A. B.
Anderson
and
R.
Hoffmann
,
J. Chem. Phys.
60
,
4271
(
1974
).
38.
A. B.
Anderson
,
R. W.
Grimes
, and
S. Y.
Hong
,
J. Phys. Chem.
91
,
4245
(
1987
).
39.
E.
Amouyal
,
M.
Bahout
, and
G.
Calzaferri
,
J. Phys. Chem.
95
,
7641
(
1991
).
40.
41.
M.
Bosson
,
S.
Grudinin
, and
S.
Redon
,
J. Comput. Chem.
34
,
492
(
2013
).
42.
M. P.
Haag
,
A. C.
Vaucher
,
M.
Bosson
,
S.
Redon
, and
M.
Reiher
,
ChemPhysChem
15
,
3301
(
2014
).
43.
F.
Ample
and
C.
Joachim
,
Surf. Sci.
600
,
3243
(
2006
).
44.
C. J.
Villagomez
,
O.
Guillermet
,
S.
Goudeau
,
F.
Ample
,
H.
Xu
,
C.
Coudret
,
X.
Bouju
,
T.
Zambelli
, and
S.
Gauthier
,
J. Chem. Phys.
132
,
074705
(
2010
).
45.
L.
Vernisse
,
S.
Munery
,
N.
Ratel-Ramond
,
Y.
Benjalal
,
O.
Guillermet
,
X.
Bouju
,
R.
Coratger
, and
J.
Bonvoisin
,
J. Phys. Chem. C
116
,
13715
(
2012
).
46.
C. J.
Villagómez
,
F.
Castanié
,
C.
Momblona
,
S.
Gauthier
,
T.
Zambelli
, and
X.
Bouju
,
Phys. Chem. Chem. Phys.
18
,
27521
(
2016
).
47.
Y.
Makoudi
,
E.
Duverger
,
M.
Arab
,
F.
Chérioux
,
F.
Ample
,
G.
Rapenne
,
X.
Bouju
, and
F.
Palmino
,
ChemPhysChem
9
,
1437
(
2008
).
48.
X.
Bouju
,
F.
Chérioux
,
S.
Coget
,
G.
Rapenne
, and
F.
Palmino
,
Nanoscale
5
,
7005
(
2013
).
49.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
50.
R. J.
Full
,
K.
Autumn
,
Y. A.
Liang
,
S. T.
Hsieh
,
W.
Zesch
,
W. P.
Chan
,
T. W.
Kenny
, and
R.
Fearing
,
Nature
405
,
681
(
2000
).
51.
K.
Oura
,
V. G.
Lifshits
,
A.
Saranin
,
A. V.
Zotov
, and
M.
Katayama
,
Surface Science
(
Springer Science and Business Media
,
Berlin, Heidelberg
,
2013
).
52.
X.
Wu
,
M. C.
Vargas
,
S.
Nayak
,
V.
Lotrich
, and
G.
Scoles
,
J. Chem. Phys.
115
,
8748
(
2001
).
53.
54.
55.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
,
SIAM J. Sci. Comput.
16
,
1190
(
2006
).
56.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
, Springer series in operations research and financial engineering (
Springer Science and Business Media
,
2006
).
57.
A. S.
Lewis
and
M. L.
Overton
,
Math. Program.
141
,
135
(
2013
).
58.
G.
Tasi
,
F.
Mizukami
, and
I.
Plink
,
Comput. Chem.
21
,
319
(
1997
).
59.
M.
Bosson
,
C.
Richard
,
A.
Plet
,
S.
Grudinin
, and
S.
Redon
,
J. Comput. Chem.
33
,
779
(
2012
).
60.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford University Press
,
1993
).
61.
Ó.
Paz
and
J. M.
Soler
,
Phys. Status Solidi B
243
,
1080
(
2006
).
62.
P.
Sautet
and
C.
Joachim
,
Chem. Phys. Lett.
153
,
511
(
1988
).
63.
64.
G.
Doyen
,
D.
Drakova
, and
M.
Scheffler
,
Phys. Rev. B
47
,
9778
(
1993
).
65.
J.
Bardeen
,
Phys. Rev. Lett.
6
,
57
(
1961
).
66.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
67.
J.
Tersoff
and
D. R.
Hamann
, in
Scanning Tunneling Microscopy
(
Springer
,
Dordrecht, The Netherlands
,
1985
), pp.
59
67
.
68.
É.
Brémond
,
M.
Savarese
,
N. Q.
Su
,
Á. J.
Pérez-Jiménez
,
X.
Xu
,
J. C.
Sancho-García
, and
C.
Adamo
,
J. Chem. Theory Comput.
12
,
459
(
2016
).
69.
S.-W.
Hla
,
L.
Bartels
,
G.
Meyer
, and
K.-H.
Rieder
,
Phys. Rev. Lett.
85
,
2777
(
2000
).
70.
J.
Björk
,
F.
Hanke
, and
S.
Stafström
,
J. Am. Chem. Soc.
135
,
5768
(
2013
).
71.
X.
Bouju
,
C.
Mattioli
,
G.
Franc
,
A.
Pujol
, and
A.
Gourdon
,
Chem. Rev.
117
,
1407
(
2017
).
You do not currently have access to this content.