Resonant response of the Great Pyramid interacting with external electromagnetic waves of the radio frequency range (the wavelength range is 200–600 m) is theoretically investigated. With the help of numerical simulations and multipole decomposition, it is found that spectra of the extinction and scattering cross sections include resonant features associated with excitation of the Pyramid's electromagnetic dipole and quadrupole moments. Electromagnetic field distributions inside the Pyramid at the resonant conditions are demonstrated and discussed for two cases, when the Pyramid is located in a homogeneous space or on a substrate. It is revealed that the Pyramid's chambers can collect and concentrate electromagnetic energy for the both surrounding conditions. In the case of the Pyramid on the substrate, at the shorter wavelengths, the electromagnetic energy accumulates in the chambers providing local spectral maxima for electric and magnetic fields. It is shown that basically the Pyramid scatters the electromagnetic waves and focuses them into the substrate region. The spectral dependence of the focusing effect is discussed.

1.
L. W.
Alvarez
,
J. A.
Anderson
,
F. E.
Bedwe
 et al, “
Search for hidden chambers in the pyramids
,”
Science
167
,
832
839
(
1970
).
2.
K.
Morishima
,
A.
Nishio
,
M.
Moto
,
T.
Nakano
, and
M.
Nakamura
, “
Development of nuclear emulsion for muography
,”
Ann. Geophys.
60
,
S0112
(
2017
).
3.
K.
Morishima
,
M.
Kuno
,
A.
Nishio
 et al, “
Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons
,”
Nature
552
,
386
390
(
2017
).
4.
R.
Alaee
,
C.
Rockstuhl
, and
I.
Fernandez-Corbaton
, “
An electromagnetic multipole expansion beyond the long-wavelength approximation
,”
Opt. Commun.
407
,
17
21
(
2018
).
5.
B. T.
Draine
, “
The discrete-dipole approximation and its application to interstellar graphite grains
,”
Astrophys. J.
333
,
848
(
1988
).
6.
A. B.
Evlyukhin
,
C.
Reinhardt
,
E.
Evlyukhin
, and
B. N.
Chichkov
, “
Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface
,”
J. Opt. Soc. Am. B
30
,
2589
(
2013
).
7.
M. A.
Yurkin
and
A. G.
Hoekstra
, “
The discrete dipole approximation: An overview and recent developments
,”
J. Quant. Spectrosc. Radiat. Transfer
106
,
558
(
2007
).
8.
P. D.
Terekhov
,
K. V.
Baryshnikova
,
Y. A.
Artemyev
,
A.
Karabchevsky
,
A. S.
Shalin
, and
A. B.
Evlyukhin
, “
Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges
,”
Phys. Rev. B
96
,
035443
(
2017
).
9.
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation
,”
Phys. Rev. B
84
,
235429
(
2011
).
10.
D.
Sikdar
,
W.
Cheng
, and
M.
Premaratne
, “
Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering
,”
J. Appl. Phys.
117
,
083101
(
2015
).
11.
T.
Søndergaard
and
S. I.
Bozhevolnyi
, “
Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study
,”
Phys. Rev. B
69
,
045422
(
2004
).
12.
L.
Novotny
, “
Allowed and forbidden light in near-field optics. II. Interacting dipolar particles
,”
J. Opt. Soc. Am. A
14
,
105
(
1997
).
13.
L.
Novotny
,
B.
Hecht
, and
D.
Pohl
, “
Interference of locally excited surface plasmons
,”
J. Appl. Phys.
81
,
1798
(
1997
).
14.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University
,
New York
,
2006
).
15.
A. B.
Evlyukhin
,
T.
Fischer
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles
,”
Phys. Rev. B
94
,
205434
(
2016
).
16.
P. D.
Terekhov
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
, “
Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution
,”
Opt. Lett.
42
,
835
838
(
2017
).
17.
V. A.
Zenin
,
A. B.
Evlyukhin
,
S. M.
Novikov
,
Y.
Yang
,
R.
Malureanu
,
A. V.
Lavrinenko
,
B. N.
Chichkov
, and
S. I.
Bozhevolnyi
, “
Direct amplitude-phase near-field observation of higher-order anapole states
,”
Nano Lett.
17
,
7152
7159
(
2017
).
18.
J. L.
Davis
and
A. P.
Annan
, “
Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy
,”
Geophys. Prospect.
37
,
531
551
(
1989
).
19.
A.
Martinez
and
A. P.
Byrnes
, “
Modeling dielectric-constant values of geologic materials: An aid to ground-penetrating radar data collection and interpretation
,”
Curr. Res. Earth Sci.
247
,
1
16
(
2002
).
20.
S. O.
Nelson
, “
Determining dielectric properties of coal and limestone by measurements on pulverized samples
,”
J. Microwave Power Electromagn. Energy
31
,
215
220
(
1996
).
You do not currently have access to this content.