We experimentally and numerically investigated the cascade random-quasi-phase-matched harmonic generation in polycrystalline zinc selenide with tightly focused mid-infrared nanosecond laser pulses. We observed a sharp transition between two distinct intensity scaling regimes as a function of pump energy from sub IN to super IN, where I is the pump intensity and N is the harmonic order. To gain an understanding of the observations of this complex nonlinear process, we carried out simulations of the coupled three-wave mixing equations with random grain sizes and orientations. We found a grain size dependence of the effective phase-matching condition, suggesting that manipulation of grain size can be an effective pathway to phase-matching optimization. This approach may provide a framework for effectively enhancing high harmonic generation and other wave mixing effects in polycrystalline materials.

1.
E. Y.
Morozov
,
A. A.
Kaminski
,
A. S.
Chirkin
, and
D. B.
Yusupov
,
J. Exp. Theor. Phys. Lett.
73
,
647
(
2001
).
2.
E. Y.
Morozov
and
A. S.
Chirkin
,
Quantum Electron.
34
,
227
(
2004
).
3.
M.
Baudrier-Raybaut
,
R.
Haïdar
,
P.
Kupecek
,
P.
Lemasson
, and
E.
Rosencher
,
Nature
432
,
374
(
2004
).
4.
X.
Vidal
and
J.
Martorell
,
Phys. Rev. Lett.
97
,
1
(
2006
).
5.
Q.
Ru
,
N.
Lee
,
X.
Chen
,
K.
Zhong
,
G.
Tsoy
,
M.
Mirov
,
S.
Vasilyev
,
S. B.
Mirov
, and
K. L.
Vodopyanov
,
Optica
4
,
617
(
2017
).
6.
S.
Vasilyev
,
I.
Moskalev
,
M.
Mirov
,
V.
Smolski
,
S.
Mirov
, and
V.
Gapontsev
,
Opt. Mater. Express
7
,
2636
(
2017
).
7.
S.
Vasilyev
,
I.
Moskalev
,
M.
Mirov
,
S.
Mirov
, and
V.
Gapontsev
,
Opt. Lett.
40
,
5054
(
2015
).
8.
A. H.
Chin
,
O. G.
Calderón
, and
J.
Kono
,
Phys. Rev. Lett.
86
,
3292
(
2001
).
9.
A. A.
Lanin
,
E. A.
Stepanov
,
A. B.
Fedotov
, and
A. M.
Zheltikov
,
Optica
4
,
516
(
2017
).
10.
S.
Ghimire
,
A. D.
Dichiara
,
E.
Sistrunk
,
P.
Agostini
,
L. F.
Dimauro
, and
D. A.
Reis
,
Nat. Phys.
7
,
138
(
2011
).
11.
R.
Fischer
,
S. M.
Saltiel
,
D. N.
Neshev
,
W.
Krolikowski
, and
Y. S.
Kivshar
,
Appl. Phys. Lett.
89
, 191105 (
2006
).
12.
A. S.
Aleksandrovsky
,
A. M.
Vyunishev
,
A. I.
Zaitsev
, and
V. V.
Slabko
,
Phys. Rev. A
82
,
1
(
2010
).
13.
N.
An
,
H.
Ren
,
Y.
Zheng
,
X.
Deng
, and
X.
Chen
,
Appl. Phys. Lett.
100
, 221103 (
2012
).
14.
H.
Wagner
,
M.
Kühnelt
,
W.
Langbein
, and
J.
Hvam
,
Phys. Rev. B
58
,
10494
(
1998
).
15.
S.
Ghimire
,
A. D.
Dichiara
,
E.
Sistrunk
,
G.
Ndabashimiye
,
U. B.
Szafruga
,
A.
Mohammad
,
P.
Agostini
,
L. F.
Dimauro
, and
D. A.
Reis
,
Phys. Rev. A
85
,
1
(
2012
).
16.
A. V.
Smith
and
B. T.
Do
,
Appl. Opt.
47
,
4812
(
2008
).
17.
S. A.
Rodin
,
V. B.
Ikonnikov
,
D. V.
Savin
, and
E. M.
Gavrishchuk
,
Inorg. Mater.
53
,
1115
(
2017
).
18.
P.
Lehto
,
H.
Remes
,
T.
Saukkonen
,
H.
Hänninen
, and
J.
Romanoff
,
Mater. Sci. Eng. A
592
,
28
(
2014
).
19.
R. W.
Boyd
,
Nonlinear Optics
, 3rd ed. (
Academic Press
,
2008
).
20.
P. E.
Powers
,
Fundamentals of Nonlinear Optics
(
CRC Press
,
2011
).
21.
J. E. M. F.
Zernike
,
Applied Nonlinear Optics
(
Wiley
,
New York
,
1973
).
22.
A.
Major
,
J. S.
Aitchison
,
P. W. E.
Smith
,
E.
Sorokin
, and
I. T.
Sorokina
,
Proc. SPIE
5971
,
59710H
(
2005
).
23.
G.
Fibich
and
A. L.
Gaeta
,
Opt. Lett.
25
,
335
(
2000
).
You do not currently have access to this content.