There is an increasing demand for thin films with tailored properties, which requires the use and control of adequate deposition techniques. Ion beam sputter deposition (IBSD) is a physical vapor deposition (PVD) technique that is capable of fulfilling the technological challenges. In contrast to other PVD techniques, IBSD offers a unique opportunity to tailor the properties of the film-forming particles (sputtered target and scattered primary particles) and, hence, thin film properties. This is related to the fact that the generation and acceleration of the primary particles from the ion beam source, the generation of film-forming particles at the target, and thin film growth on the substrate are spatially separated. Thus, by changing ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and emission angle), the energy distributions of the film-forming particles are modified. Even though in use for several decades, IBSD was not investigated systematically until lately. Utilizing the full potential of IBSD requires a comprehensive understanding of the physical processes. This tutorial describes the systematics of IBSD: The correlation between process parameters, properties of the film-forming particles, and thin film properties. The most important process parameters are the scattering geometry and the primary particle species. Depending on the material, different film properties can be influenced. Examples are adhesion, structural properties, composition, surface roughness, mass density, optical properties, stress, and electrical resistivity. In addition to the experimental results, fundamental physical aspects, experimental setups, and techniques for thin film deposition and particle characterization are described.

1.
D. M.
Mattox
,
Handbook of Physical Vapor Deposition (PVD) Processing
(
Noyes
,
2010
), ISBN 978–0815520375.
2.
Handbook of Deposition Technologies for Films and Coatings, edited by M. Martin (William Andrew, 2010), ISBN 978–0815520313.
3.
Handbook of Thin-Film Deposition Processes and Techniques, edited by K. Seshan (Noyes, 2002), ISBN 978–0815514425.
4.
K.
Wasa
,
Handbook of Sputter Deposition Technology
(
Wiliam Andrew
,
2012
), ISBN 978–1437734836.
5.
Reactive Sputter Deposition, edited by D. Depla and S. Mahieu (Springer, 2008), ISBN 978–3540766643.
6.
R. A.
Haefer
,
Oberflächen- und Dünnschicht-Technologie, Teil I: Beschichtungen von Oberflächen
(
Springer
,
1987
), ISBN 978–3642828355.
7.
A. T.
Forrester
,
Large Ion Beams: Fundamentals of Generation and Propagation
(
Wiley-VCH
,
1988
), ISBN 978–0471625575.
8.
J.
Zhang
and
H.
Zhang
,
Ion Sources
(
Springer
,
1999
), ISBN 978–3540657477.
9.
The Physics and Technology of Ion Sources, edited by I. G. Brown (Wiley-VCH, 2004), ISBN 978–3527404100.
10.
H. R.
Kaufman
,
Applications of Broad-Beam Ion Sources
(
Kaufman & Robinson Inc.
,
2011
), ISBN 978–0985266400, see https://ionsources.com/resources/.
11.
B.
Wolf
,
Handbook of Ion Sources
(
CRC Press
,
2017
), ISBN 978–0849325021.
12.
J. R.
McNeil
,
J. J.
McNally
, and
P. D.
Reader
, “Ion beam deposition,” in Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, Equipment, and Applications (Noyes, 1988), pp. 463–499, ISBN 978–0815511533.
13.
E. D.
McGlanahan
and
N.
Laegreid
, “Production of thin films by controlled deposition of sputtered material,” in Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications (Springer, 2013), pp. 339–377, ISBN 978–3662311042.
14.
K. L.
Chopra
,
M. R.
Randlett
, and
R. H.
Duff
,
Appl. Phys. Lett.
9
,
402
(
1966
).
15.
C.
Weissmantel
,
O.
Fiedler
,
G.
Hecht
, and
G.
Reisse
,
Thin Solid Films
13
,
359
(
1972
).
16.
P. H.
Schmidt
,
E. G.
Spencer
, and
R. N.
Castellano
,
Solid State Technol.
15
,
27
(
1972
).
17.
Handbook of Plasma Processing Technology, edited by S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood (Noyes, 1991), ISBN 978–0815512202.
18.
J. E.
Greene
,
J. Vac. Sci. Technol. A
25
,
05C204
(
2017
).
19.
21.
J.
Dembowski
,
H.
Oechsner
,
Y.
Yamamura
, and
M.
Urbassek
,
Nucl. Instrum. Methods Phys. Res. B
18
,
464
(
1986
).
22.
A.
Goehlich
and
H. F.
Döbele
,
Nucl. Instrum. Methods Phys. Res. B
115
,
489
(
1996
).
23.
E.
Franke
,
H.
Neumann
,
M.
Zeuner
,
W.
Frank
, and
F.
Bigl
,
Surf. Coatings Technol.
97
,
90
(
1997
).
24.
A.
Goehlich
,
N.
Niemöller
, and
H. F.
Döbele
,
J. Nucl. Mater.
241-243
,
1160
(
1997
).
25.
A.
Goehlich
,
N.
Niemöller
, and
H. F.
Döbele
,
J. Nucl. Mater.
266-269
,
501
(
1999
).
26.
A.
Goehlich
,
D.
Gillmann
, and
H. F.
Döbele
,
Nucl. Instrum. Methods Phys. Res. B
164-165
,
834
(
2000
).
27.
A.
Goehlich
,
N.
Niemöller
, and
H. F.
Döbele
,
Phys. Rev. B
62
,
9349
(
2000
).
28.
A.
Goehlich
,
D.
Gillmann
, and
H. F.
Döbele
,
Nucl. Instrum. Methods Phys. Res. B
179
,
351
(
2001
).
29.
M.
Stepanova
and
S. K.
Dew
,
J. Vac. Sci. Technol. A
19
,
2805
(
2001
).
30.
M.
Stepanova
and
S. K.
Dew
,
J. Appl. Phys.
92
,
1699
(
2002
).
31.
M.
Stepanova
and
S. K.
Dew
,
Nucl. Instrum. Methods Phys. Res. B
215
,
357
(
2004
).
32.
M.
Stepanova
,
S. K.
Dew
, and
I. P.
Soshnikov
,
Phys. Rev. B
66
,
125407
(
2002
).
33.
R.
Feder
,
C.
Bundesmann
,
H.
Neumann
, and
B.
Rauschenbach
,
Nucl. Instrum. Methods Phys. Res. B
316
,
198
(
2013
).
34.
R.
Feder
,
F.
Frost
,
H.
Neumann
,
C.
Bundesmann
, and
B.
Rauschenbach
,
Nucl. Instrum. Methods Phys. Res. B
317
,
137
(
2013
).
35.
R.
Feder
,
C.
Bundesmann
,
H.
Neumann
, and
B.
Rauschenbach
,
Nucl. Instrum. Methods Phys. Res. B
334
,
88
(
2014
).
36.
C.
Bundesmann
,
R.
Feder
,
T.
Lautenschläger
, and
H.
Neumann
,
Contrib. Plasma Phys.
55
,
737
(
2015
).
37.
T.
Lautenschläger
,
R.
Feder
,
H.
Neumann
,
C.
Rice
,
M.
Schubert
, and
C.
Bundesmann
,
Nucl. Instrum. Methods Phys. Res. B
385
,
30
(
2016
).
38.
T.
Lautenschläger
and
C.
Bundesmann
,
J. Vac. Sci. Technol. A
35
,
041001
(
2017
).
39.
C.
Bundesmann
,
R.
Feder
,
J. W.
Gerlach
, and
H.
Neumann
,
Thin Solid Films
551
,
46
(
2014
).
40.
C.
Bundesmann
,
R.
Feder
,
R.
Wunderlich
,
U.
Teschner
,
M.
Grundmann
, and
H.
Neumann
,
Thin Solid Films
589
,
487
(
2015
).
41.
C.
Bundesmann
,
T.
Lautenschläger
,
E.
Thelander
, and
D.
Spemann
,
Nucl. Instrum. Methods Phys. Res. B
395
,
17
(
2017
).
42.
C.
Bundesmann
,
T.
Lautenschläger
,
D.
Spemann
,
A.
Finzel
,
E.
Thelander
,
M.
Mensing
, and
F.
Frost
,
Appl. Surf. Sci.
421
,
331
(
2017
).
43.
C.
Bundesmann
,
T.
Lautenschläger
,
D.
Spemann
,
A.
Finzel
,
M.
Mensing
, and
F.
Frost
,
Eur. Phys. J. B
90
,
187
(
2017
).
44.
L.
Pietzonka
,
T.
Lautenschläger
,
D.
Spemann
,
A.
Finzel
,
J. W.
Gerlach
,
F.
Frost
, and
C.
Bundesmann
,
Eur. Phys. J. B
91
,
252
(
2018
).
45.
M.
Mateev
,
T.
Lautenschläger
,
D.
Spemann
,
A.
Finzel
,
J. W.
Gerlach
,
F.
Frost
, and
C.
Bundesmann
,
Eur. Phys. J. B
91
,
45
(
2018
).
46.
A.
Barranco
,
A.
Borras
,
A. R.
Gonzalez-Elipe
, and
A.
Palmero
,
Prog. Mater. Sci.
76
,
59
(
2016
).
47.
C.
Bundesmann
,
I.-M.
Eichentopf
,
S.
Mändl
, and
H.
Neumann
,
Thin Solid Films
516
,
8604
(
2008
).
48.
Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids, edited by R. Behrisch (Springer, 2013), ISBN 978–3662308882.
49.
Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neutron Sputtering, Surface Topography, edited by R. Behrisch (Springer, 2013), ISBN 978–3662311691.
50.
Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications, edited by R. Behrisch and K. Wittmaak (Springer, 2013), ISBN 978–3662311042.
51.
Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies, edited by R. Behrisch and W. Eckstein (Springer, 2007), ISBN 978-3540445005.
52.
M.
Nastasi
,
J.
Mayer
, and
J. K.
Hirvonen
,
Ion-Solid Interactions: Fundamentals and Applications
(
Cambridge University Press
,
2010
), ISBN 978–0511565007.
53.
Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage, edited by W. Wesch and E. Wendler (Springer, 2016), ISBN 978–3319335612.
54.
W.
Eckstein
, “Sputtering yields,” in Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, 2007), pp. 33–188, ISBN 978-3540445005.
55.
J. F.
Ziegler
,
J. P.
Biersack
, and
M. D.
Ziegler
,
SRIM—The Stopping and Range of Ions in Matter
(
Self-Publishing
,
2008
), see http://www.srim.org/.
56.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res. B
268
,
1818
(
2010
).
57.
H.
Lüth
,
Solid Surfaces, Interfaces and Thin Films
(
Springer
,
2014
), ISBN 978–3319107554.
58.
O.
Almén
and
G.
Bruce
,
Nucl. Instrum. Methods
11
,
279
(
1961
).
59.
M. I.
Guseva
,
Fiz. Tverd. Tela
1
,
1540
(
1959
) [Sov. Phys.—Solid State 1, 1410 (1960)].
60.
D.
Rosenberg
and
G. K.
Wehner
,
J. Appl. Phys.
33
,
1842
(
1962
).
61.
H. H.
Andersen
, and
H. L.
Bay
,
Radiat. Eff.
19
,
139
(
1973
).
62.
M.
Szymonski
,
R. S.
Bhattacharya
,
H.
Overeijnder
, and
A. E.
de Vries
,
J. Phys. D Appl. Phys.
11
,
751
(
1978
).
63.
M.
Tartz
,
T.
Heyn
,
C.
Bundesmann
,
C.
Zimmermann
, and
H.
Neumann
,
Eur. Phys. J. D
61
,
587
(
2011
).
64.
N.
Laegreid
and
G. K.
Wehner
,
J. Appl. Phys.
32
,
365
(
1961
).
65.
J.
Bohdansky
,
Nucl. Instrum. Methods Phys. Res. B
2
,
587
(
1984
).
66.
Y.
Yamamura
and
S.
Shindo
,
Radiat. Eff.
80
,
57
(
1984
).
67.
W. O.
Hofer
, “Angular, energy and mass distribution of sputtered particles,” in Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications (Springer, 2013), pp. 15–90, ISBN 978–3662311042.
68.
H.
Gnaser
, “Energy and angular distributions of sputtered species,” in Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, 2007), pp. 231–328, ISBN 978-3540445005.
69.
70.
Y.
Yamamura
and
K.
Muraoka
,
Nucl. Instrum. Methods Phys. Res. B
42
,
175
(
1989
).
71.
M.
Tanemura
,
M.
Ukita
, and
F.
Okuyama
,
Surf. Sci.
426
,
141
(
1999
).
72.
W.
Eckstein
and
H. M.
Urbassek
, “Computer simulation of the sputtering process,” in Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, 2007), pp. 21–32, ISBN 978-3540445005.
73.
J. P.
Biersack
and
L. G.
Haggmark
,
Nucl. Instrum. Methods
174
,
257
(
1980
).
74.
J. P.
Biersack
and
W.
Eckstein
,
Appl. Phys. A
34
,
73
(
1984
).
75.
W.
Möller
and
W.
Eckstein
,
Nucl. Instrum. Methods Phys. Res. B
2
,
814
(
1984
).
76.
H.
Hofsäss
,
K.
Zhang
, and
A.
Mutzke
,
Appl. Surf. Sci.
310
,
134
(
2014
).
77.
W.
Eckstein
,
R.
Dohmen
,
A.
Mutzke
, and
R.
Schneider
, “SDTrimSP: A Monte-Carlo code for calculating collision phenomena in randomized targets,” IPP-Report 12/3, Max-Planck-Institut für Plasmaphysik, 2007, see http://hdl.handle.net/11858/00-001M-0000-0027-04E8-F.
78.
A.
Mutzke
,
R.
Schneider
,
W.
Eckstein
, and
R.
Dohmen
, “SDTrimSP version 5.0,” IPP-Report 12/8, Max-Planck-Institut für Plasmaphysik, 2011, see http://hdl.handle.net/11858/00-001M-0000-0026-EAF9-A.
79.
A.
Mutzke
,
R.
Schneider
, and
I.
Bizyukov
,
J. Nucl. Mater.
390-391
,
115
(
2009
).
80.
A.
Mutzke
,
R.
Schneider
, and
G.
Bandelow
, “SDTrimSP-2D: Simulation of particles bombarding on a two dimensional target—Version 2.0,” IPP-Report 12/11, Max-Planck-Institut für Plasmaphysik, 2013, see http://hdl.handle.net/11858/00-001M-0000-0026-E06F-E.
81.
H. M.
Urbassek
,
Nucl. Instrum. Methods Phys. Res. B
122
,
427
(
1997
).
82.
R.
Smith
,
S. D.
Kenny
, and
D.
Ramasawmy
,
Philos. Trans. R. Soc. A
362
,
157
(
2004
).
83.
H. M.
Urbassek
, “Results of molecular dynamics calculations,” in Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, 2007), pp. 189–230, ISBN 978-3540445005.
84.
M.
Ohring
,
Materials Science of Thin Films
(
Academic Press
,
2001
), ISBN 978–0125249751.
85.
J. A.
Thornton
,
J. Vac. Sci. Technol.
11
,
666
(
1974
).
86.
87.
W.
Hauffe
, “Production of microstructures by ion beam sputtering,” in Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications (Springer, 2013), pp. 305–338, ISBN 978–3662311042.
88.
Dry Etching for Microelectronics (Materials Processing: Theory and Practices), edited by R. A. Powell (North Holland, 2012), ISBN 978–0444869050.
89.
G.
Franz
,
Low Pressure Plasmas and Microstructuring Technology
(
Springer
,
2010
), ISBN 978–3642099397.
90.
F.
Frost
,
B.
Ziberi
,
A.
Schindler
, and
B.
Rauschenbach
,
Appl. Phys. A
91
,
551
(
2008
).
91.
F.
Frost
,
R.
Fechner
,
B.
Ziberi
,
J.
Völlner
,
D.
Flamm
, and
A.
Schindler
,
J. Phys. Condens. Matter
21
,
224026
(
2009
).
92.
S.
Samukawa
,
Jpn. J. Appl. Phys.
45
,
2395
(
2006
).
93.
J.
Mun̈oz-García
,
L.
Vázquez
,
M.
Castro
,
R.
Gago
,
A.
Redondo-Cubero
,
A.
Moreno-Barrado
, and
R.
Cuerno
,
Mater. Sci. Eng. R
86
,
1
(
2014
).
94.
X.
Xie
and
S.
Li
, “Ion beam figuring technology,” in Handbook of Manufacturing Engineering and Technology (Springer, 2014), pp. 1343–1390, ISBN 978–1447146698.
95.
M.
Zeuner
and
S.
Kiontke
,
Optik Photonik
7
,
56
(
2012
).
96.
A.
Keller
and
S.
Facsko
,
Materials
3
,
4811
(
2010
).
97.
P. J.
Martin
,
J. Mater. Sci.
21
,
1
(
1986
).
98.
99.
100.
101.
S.
Mohan
and
M. G.
Krishna
,
Vacuum
46
,
645
(
1995
).
102.
S.
Berg
and
T.
Nyberg
,
Thin Solid Films
476
,
215
(
2005
).
103.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Wiley
,
2008
), ISBN 978–0470429273.
104.
105.
E. K.
Wåhlin
,
M.
Watanabe
,
J.
Shimonek
,
D.
Burtner
, and
D.
Siegfried
,
Appl. Phys. Lett.
83
,
4722
(
2003
).
106.
V. V.
Zhurin
,
Industrial Ion Sources: Broadbeam Gridless Ion Source Technology
(
Wiley-VCH
,
2011
), ISBN 978–3527410293.
107.
B. N.
Makarenko
,
A. B.
Popov
,
A. A.
Shaporenko
, and
A. P.
Shergin
,
Radiat. Eff. Defects Solids
113
,
263
(
1990
).
108.
P.
Mazarov
,
A.
Samartsev
, and
A.
Wucher
,
Appl. Surf. Sci.
252
,
6452
(
2006
).
109.
Y.
Kudriavtsev
,
S.
Gallardo
,
A.
Villegas
,
G.
Ramirez
, and
R.
Asomoza
,
Appl. Surf. Sci.
254
,
3801
(
2008
).
110.
P.
van der Heide
,
Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices
(
Wiley
,
2014
), ISBN 978–1118480489.
111.
J. E.
Greene
,
T.
Motooka
,
J.-E.
Sundgren
,
D.
Lubben
,
S.
Gorbatkin
, and
S. A.
Barnett
,
Nucl. Instrum. Methods Phys. Res. B
27
,
226
(
1987
).
112.
T. C.
Huang
,
G.
Lim
,
F.
Parmigiani
, and
E.
Kay
,
J. Vac. Sci. Technol. A
3
,
2161
(
1985
).
113.
M.
Laube
,
F.
Rauch
,
C.
Ottermann
,
O.
Anderson
, and
K.
Bange
,
Nucl. Instrum. Methods Phys. Res. B
113
,
288
(
1996
).
114.
A.
Bendavid
,
P.
Martin
, and
H.
Takikawa
,
Thin Solid Films
360
,
241
(
2000
).
115.
D.
Mergel
,
D.
Buschendorf
,
S.
Eggert
,
R.
Grammes
, and
B.
Samset
,
Thin Solid Films
371
,
218
(
2000
).
116.
117.
M. M. M.
Bilek
and
D. R.
McKenzie
,
Surf. Coatings Technol.
200
,
4345
(
2006
).
118.
G.
Abadias
,
E.
Chason
,
J.
Keckes
,
M.
Sebastiani
,
G. B.
Thompson
,
E.
Barthel
,
G. L.
Doll
,
C. E.
Murray
,
C. H.
Stoessel
, and
L.
Martinu
,
J. Vac. Sci. Technol. A
36
,
020801
(
2018
).
You do not currently have access to this content.