We studied the drain current properties of an AlGaN/GaN multi-nano-channel (MNC) high electron mobility transistor (HEMT) fabricated on a sapphire substrate. We observed that the MNC HEMT exhibits the currents almost equal to those in the conventional planar device grown on the same chip. This result was unexpected since the actual gate width on the AlGaN surface in the case of MNC HEMT was only 20% of that for the planar device. In order to explain our experimental results, we performed a three dimensional (3D) simulation of the planar and MNC HEMTs using the TCAD Sentaurus software. Especially, we calculated the transfer characteristics of the MNC HEMT with a different nanochannel width and compared them with experimental data. The simulation results exhibited a good agreement with experimental ones. On this basis, we showed that the unusual behavior of the current in the MNC HEMT results from the enhancement of the effective electron velocity (ve) under the gate. In particular, we found that ve for the MNC HEMT was about 2.5 times higher than for the conventional HEMT, i.e., 2.44×107 cm/s, which is close to the peak saturation velocity in GaN (2.5×107 cm/s). Finally, we showed that such a strong enhancement of ve in the MNC HEMT case is due to the formation of the high electric field in the nanochannel. The results obtained in this work are not limited only to MNC structures but they should also be useful in understanding the electric field and electron velocity distribution in other AlGaN/GaN HEMTs with 3D nanochannels such as AlGaN/GaN FinFETs.

1.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y. F.
Wu
,
Proc. IEEE
96
,
287
(
2008
).
2.
K.
Shinohara
,
D. C.
Regan
,
Y.
Tang
,
A. L.
Corrion
,
D. F.
Brown
,
J. C.
Wong
,
J. F.
Robinson
,
H. H.
Fung
,
A.
Schmitz
,
T. C.
Oh
,
S. J.
Kim
,
P. S.
Chen
,
R. G.
Nagele
,
A. D.
Margomenos
, and
M.
Micovic
,
IEEE Trans. Electron Devices
60
,
2982
(
2013
).
3.
D. S
Lee
,
Z.
Liu
, and
T.
Palacios
,
Jpn. J. Appl. Phys.
53
,
100212
(
2014
).
4.
M.
Kuzuhara
,
J. T.
Asubar
, and
H.
Tokuda
,
Jpn. J. Appl. Phys. Part 1
55
,
070101
(
2016
).
5.
K. J.
Chen
,
O.
Haberlen
,
A.
Lidow
,
C.
lin Tsai
,
T.
Ueda
,
Y.
Uemoto
, and
Y.
Wu
,
IEEE Trans. Electron Devices
64
,
779
(
2017
).
6.
J.
Wong
,
K.
Shinohara
,
A. L.
Corrion
,
D. F.
Brown
,
Z.
Carlos
,
A.
Williams
,
Y.
Tang
,
J. F.
Robinson
,
I.
Khalaf
,
H.
Fung
,
A.
Schmitz
,
T.
Oh
,
S.
Kim
,
S.
Chen
,
S.
Burnham
,
A.
Margomenos
, and
M.
Micovic
,
IEEE Electron Device Lett.
38
,
95
(
2017
).
7.
T.
Hashizume
,
K.
Nishiguchi
,
S.
Kaneki
,
J.
Kuzmik
, and
Z.
Yatabe
,
Mater. Sci. Semicond. Process.
78
,
85
95
(
2018
).
8.
M.
Ramonas
,
A.
Matulionis
, and
L.
Rota
,
Semicond. Sci. Technol.
18
,
118
(
2003
).
9.
A.
Matulionis
,
J.
Liberis
,
I.
Matulioniere
,
M.
Ramonas
,
L. F.
Eastman
,
J. R.
Shealy
,
V.
Tilak
, and
A.
Vertiatchikh
,
Phys. Rev. B
68
,
035338
(
2003
).
10.
J.
Khurgin
,
Y.
Ding
, and
D.
Jena
,
Appl. Phys. Lett.
91
,
252104
(
2007
).
11.
D.
Meyer
,
D. A.
Deen
,
D. F.
Storm
,
M. G.
Ancona
,
D. S.
Katzer
,
R.
Bass
,
J. A.
Roussos
,
B. P.
Downey
,
S. C.
Binari
,
T.
Gougousi
et al.,
IEEE Electron Device Lett.
34
,
199
(
2013
).
12.
K.
Shinohara
,
D.
Regan
,
I.
Milosavljevic
,
A. L.
Corrion
,
D. F.
Brown
,
P. J.
Willadsen
,
C.
Butler
,
A.
Schmitz
,
S.
Kim
,
V.
Lee
,
A.
Ohoka
,
P. M.
Asbeck
, and
M.
Micovic
,
IEEE Electron Devices Lett.
32
,
1074
(
2011
).
13.
K.
Ohi
and
T.
Hashizume
,
Jpn. J. Appl. Phys. Part 1
48
,
081002
(
2009
).
14.
K.
Ohi
,
J. T.
Asubar
,
K.
Nishiguchi
, and
T.
Hashizume
,
IEEE Trans. Electron Device
60
,
2997
3004
(
2013
).
15.
S.
Liu
,
Y.
Cai
,
G.
Gu
,
J.
Wang
,
C.
Zeng
,
W.
Shi
,
Z.
Feng
,
H.
Qin
,
Z.
Cheng
,
K.
Chen
, and
B.
Zhang
,
IEEE Electron Device Lett.
33
,
354
356
(
2012
).
16.
B.
Lu
,
E.
Matioli
, and
T.
Palacios
,
IEEE Electron Device Lett.
33
,
360
362
(
2012
).
17.
M. A.
Alsharef
,
R.
Granzner
, and
F.
Schwierz
,
IEEE Trans. Electron Devices
60
,
3335
(
2013
).
18.
S.
Takashima
,
Z.
Li
, and
T. P.
Chow
,
IEEE Trans. Electron Devices
60
,
3025
(
2013
).
19.
C.
Yadav
,
P.
Kushwaha
,
S.
Khandelwal
,
J. P.
Duarte
,
Y. S.
Chauhan
, and
C
Hu
,
IEEE Electron Device Lett.
35
,
612
(
2014
).
20.
S.
Arulkumaran
,
G. I.
Ng
,
C. M.
Manoj Kumar
,
K.
Ranjan
,
K. L.
Teo
,
O. F.
Shoron
,
S.
Rajan
,
S.
Bin Dolmanan
, and
S.
Tripathy
,
Appl. Phys. Lett.
106
,
053502
(
2015
).
21.
J. H.
Seo
,
Y. W.
Jo
,
Y. J.
Yoon
,
D. H.
Son
,
C. H.
Won
,
H. S.
Jang
,
I. M.
Kang
, and
J. H.
Lee
,
IEEE Electron Device Lett.
37
,
855
(
2016
).
22.
D.
Lee
,
H.
Wang
,
A.
Hsu
,
M.
Azize
,
O.
Laboutin
,
Y.
Cao
,
J. W.
Johnson
,
E.
Beam
,
A.
Ketterson
,
M. L.
Schuette
,
P.
Saunier
, and
T.
Palacios
,
IEEE Electron Device Lett.
34
,
969
97
(
2013
).
23.
Y.
Jo
,
D.
Son
,
C.
Won
,
K.
Im
,
J.
Seo
,
I.
Kang
, and
J.
Lee
,
IEEE Electron Device Lett.
36
,
1008
1010
(
2015
).
24.
E.
Ture
,
P.
BrCkner
,
B.-J.
Godejohann
,
R.
Aidam
,
M.
Alsharef
,
R.
Granzner
,
F.
Schwierz
,
R.
Quay
, and
O.
Ambacher
,
IEEE J. Electron Device Soc.
4
,
1
6
(
2016
).
25.
K.
Zhang
,
Y.
Kong
,
G.
Zhu
,
J.
Zhou
,
X.
Yu
,
C.
Kong
,
Z.
Li
, and
T.
Chen
,
IEEE Electron Device Lett.
38
,
615
618
(
2017
).
26.
M.
Alsharef
,
M.
Christiansen
,
R.
Granzner
,
E.
Ture
,
R.
Quay
,
O.
Ambacher
, and
F.
Schwierz
,
IEEE Trans. Electron Devices
63
,
4255
4261
(
2016
).
27.
R. J. T.
Simms
,
F.
Gao
,
Y.
Pei
,
T.
Palacios
,
U. K.
Mishra
, and
M.
Kuball
,
Appl. Phys. Lett.
97
,
033502
(
2010
).
28.
N.
Tanaka
,
Y.
Sumida
,
H.
Kawai
, and
T.
Suzuki
,
Jpn. J. Appl. Phys.
48
,
04C099
(
2009
).
29.
T.
Palacios
,
L.
Shen
,
S.
Keller
,
A.
Chakraborty
,
S.
Heikman
,
S. P.
DenBaars
,
U. K.
Mishra
,
J.
Liberis
,
O.
Kiprijanovic
, and
A.
Matulionis
,
Appl. Phys. Lett.
89
,
073508
(
2006
).
30.
Z.
Xu
, “
Electric field engineering in GaN high electron mobility transistors
,” S.M. thesis,
Massachusetts Institute of Technology
,
2008
.
31.
J.
Asubar
,
Z.
Yatabe
, and
T.
Hashizume
,
Appl. Phys. Lett.
105
,
053510
(
3024
).
32.
S.
Bajaj
,
O. F.
Shoron
,
P. S.
Park
,
S.
Krishnamoorthy
,
F.
Akyol
,
T.-H.
Hung
,
Sh.
Reza
,
E.
Chumbes
,
J.
Khurgin
, and
S.
Rajan
,
Appl. Phys. Lett.
107
,
153504
(
2015
).
You do not currently have access to this content.