In the present paper, a density-based central-upwind magnetohydrodynamic (MHD) code has been used to get insight into the acceleration mechanism of the applied-field magnetoplasmadynamic (MPD) thrusters. The magnetic field is axially applied by an external coil surrounding the anode and interacts with the discharge current and the induced azimuthal current to produce thrust. In the present work, the numerical modeling of applied-field magnetoplasmadynamic thrusters is performed with a separate magnetostatic code to produce external magnetic field from permanent magnets, and the density-based method is used to compute the resulting flow field from the MHD equations. The numerical model is applied to the NASA Lewis Research Center 100-kW magnetoplasmadynamic (MPD) thruster which is experimentally and numerically well documented to demonstrate its capability to capture the main characteristics of plasma acceleration and thrust production in such a device. The code is then used to investigate the thruster performance operating in the applied magnetic field strength range 10100 mT at discharge currents of 7502000 A with a constant mass flow rate of 0.1 g/s. The effect of the applied magnetic field inside and outside of the thruster is investigated and reported.

1.
G.
Krülle
,
M.
Auweter-Kurtz
, and
A.
Sasoh
,
J. Propulsion Power
14
,
754
(
1998
).
2.
A. D.
Kodys
and
E. Y.
Choueiri
, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
AIAA-2005-4247
(AIAA, 2005).
3.
E.
Ahedo
and
M.
Merino
,
Phys. Plasmas
17
,
073501
(
2010
).
4.
G.
Krülle
, in 9th Electric Propulsion Conference, International Electric Propulsion Conference,
AIAA Paper 72-501
(AIAA, 1972).
5.
M.
Tankara
and
I.
Kimura
,
J. Propulsion Power
4
,
428
(
1988
).
6.
G. P.
Mikellides
,
J. P.
Turchi
, and
F. N.
Roderick
,
J. Propulsion Power
16
,
887
(
2000
).
7.
R.
Hosking
and
R.
Dewar
,
Fundamental Fluid Mechanics and Magnetohydrodynamics
(
Springer
,
New York
,
2016
).
8.
R.
Jahn
, Physics of Electric Propulsion, Dover Books on Physics (Dover Publications, 2006).
9.
J.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer
,
New York
,
2004
).
10.
W.
Sutherland
,
Philos. Mag. Ser. 5
36
,
507
(
1893
).
11.
J. G.
Chanty
, “
Analysis of two-dimensional flows in magneto-dynamic plasma accelerators
,” Ph.D. thesis (Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1992).
12.
F. M.
White
,
Viscous Fluid Flow
, 2nd ed. (
McGraw-Hill, Inc.
,
New-York
,
1991
).
13.
L.
Spitzer
and
R.
Härm
,
Phys. Rev.
89
,
977
(
1953
).
14.
C.
Xisto
,
J.
Pascoa
, and
P.
Oliviera
,
J. Comput. Phys.
275
,
323
(
2014
).
15.
A.
Kurganov
,
S.
Noelle
, and
G.
Petrova
,
SIAM J. Sci. Comput.
23
,
707
(
2001
).
16.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
, and
J. M.
Reese
,
Int. J. Numer. Methods Fluids
63
,
1
(
2010
).
17.
C.
Chelem Mayigué
and
R.
Groll
,
Arch. Appl. Mech.
87
,
667
(
2016
).
18.
C.
Xisto
,
J.
Pascoa
, and
P.
Oliviera
,
Int. J. Numer. Methods Fluids
72
,
1165
(
2013
).
19.
A.
Kurganov
and
E.
Tadmor
,
J. Comput. Phys.
160
,
241
(
2000
).
20.
J.
Brackbill
and
D.
Barnes
,
J. Comput. Phys.
35
,
426
(
1980
).
21.
C.
Evans
and
J.
Hawley
,
Astrophys. J.
332
,
659
(
1988
).
22.
K.
Powell
, NASA Contractor Report 194902, 1994.
23.
K.
Powell
,
P.
Roe
,
T.
Linde
,
T.
Gombosi
, and
D.
de Zeeuw
,
J. Comput. Phys.
154
,
284
(
1999
).
24.
A.
Dedner
,
F.
Kemm
,
C. D.
Munz
, and
T.
Schnitzer
,
J. Comput. Phys.
175
,
645
(
2002
).
25.
R. L.
Burton
,
K. E.
Clark
, and
R. G.
Jahn
,
J. Spacecr.
20
,
299
(
1983
).
26.
R.
Albertoni
,
F.
Paganucci
, and
M.
Andrenucci
,
Acta Astronaut.
107
,
177
(
2015
).
27.
28.
K.
Sankaran
, “
Simulation of mpd flows using a flux-limited numerical method for the MHD equations
,” Ph.D. thesis (Princeton University, Technology and Medicine, Princeton, 2005).
29.
A.
Sasoh
and
Y.
Arakawa
,
J. Propulsion Power
11
,
351
(
1995
).
30.
Y.
Kagaya
and
H.
Tahara
, in 29th International Electric Propulsion Conference, IEPC-2005-54 (IEPC, 2005).
31.
A.
Blackstock
,
D.
Fradkin
,
K.
Liewer
,
D.
Roehling
,
T.
Stratton
, and
M.
Williams
,
AIAA J.
8
,
886
(
1970
).
32.
R. M.
Myers
,
M.
Mantenieksc
, and
J.
Sovey
,
AIAA Paper 90-2669
(AIAA, 1990).
33.
K.
Sankaran
,
E. Y.
Choueiri
, and
S. C.
Jardin
,
J. Propulsion Power
21
,
129
(
2005
).
34.
J.
Vanderlinde
,
Classical Electromagnetic Theory
(
Springer
,
2005
).
35.
J.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley & Sons
,
New York
,
1998
).
36.
F. F.
Chen
,
Introduction of Plasma Physics
, 1st ed. (
Plenum Press
,
New York
,
1974
). p.
336
.
37.
P.
Mikellides
and
P.
Turchi
,
J. Propulsion Power
16
,
894
(
2000
).
38.
K.
Kubota
, “
Numerical study on plasma flowfield and performance of magnetoplasmadynamic thrusters
,” Ph.D. thesis (Department of Energy Sciences, Tokyo Institute of Technology, 2009).
39.
D.
Lev
, “
Investigation of efficiency in applied field magnetoplasmadynamic thrusters
,” Ph.D. thesis (Department of Mechanical and Aerospace Engineering, Princeton University, 2012).
40.
H.
Tang
,
J.
Cheng
,
C.
Liu
, and
T. M.
York
,
Phys. Plasmas
19
,
073107
(
2012
).
41.
H.
Liu
,
M.
Li
,
Z.
Ning
,
J.
Ren
,
H.
Tang
,
D.
Yu
,
E. V.
Demidov
,
S. I.
Eliseev
, and
A. A.
Kudryavtsev
,
IEEE Trans. Plasma Sci.
43
,
4024
(
2015
).
42.
P.
Upadhyay
,
A.
Boxberger
, and
G.
Herdrich
, in 35th International Electric Propulsion Conference, IEPC-2017-354 (IEPC, 2017).
You do not currently have access to this content.