Superconducting quantum interference filters, or SQIFs, are a promising class of highly sensitive magnetometers benefiting from a highly peaked and symmetric magnetic response at zero-input flux. They can be used in magnetometry, e.g., in wideband applications. A simple solution to increase further their sensitivity is to add a superconducting flux concentrator (SFC) to their design. Using the ion irradiation process, we designed a meander-shaped SQIF enhanced with an SFC. The SFC improved the SQIF transfer factor by a factor of 8.4. However, high temperature superconducting (HTSc) devices are vulnerable to flux pinning, which can severely hinder their response. On the one hand, HTSc technologies alleviate the burden of cryogenics. On the other hand, applications that use SFCs in noisy and unshielded environments will become possible only if a better understanding of how this flux impacts the device’s properties is achieved. We studied the relationship between the field present during the cooling process of the SQIF antenna (thereafter called “cooling field”) and the evolution of its DC response. We developed a simple and phenomenological model and were able to reproduce the degradation of the SQIF response. This work demonstrates the usability of SFC-enhanced SQIFs based on ion irradiated junctions in rather harsh conditions, in particular, an unshielded environment, and also gives an insight into the implications that such conditions cause on the application of SFCs in general.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
Article navigation
7 December 2018
Research Article|
December 07 2018
Effects of flux pinning on the DC characteristics of meander-shaped superconducting quantum interference filters with flux concentrator
A. Labbé
;
A. Labbé
1
Center of Magnetic Resonance of Biological Systems, UMR 5536 CNRS, Université de Bordeaux
, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
Search for other works by this author on:
E. Parzy;
E. Parzy
1
Center of Magnetic Resonance of Biological Systems, UMR 5536 CNRS, Université de Bordeaux
, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
Search for other works by this author on:
E. Thiaudière;
E. Thiaudière
1
Center of Magnetic Resonance of Biological Systems, UMR 5536 CNRS, Université de Bordeaux
, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
Search for other works by this author on:
P. Massot;
P. Massot
1
Center of Magnetic Resonance of Biological Systems, UMR 5536 CNRS, Université de Bordeaux
, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
Search for other works by this author on:
J.-M. Franconi;
J.-M. Franconi
1
Center of Magnetic Resonance of Biological Systems, UMR 5536 CNRS, Université de Bordeaux
, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
Search for other works by this author on:
C. Ulysse;
C. Ulysse
2
Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay
, C2N—Marcoussis, 91460 Marcoussis, France
Search for other works by this author on:
Y. Lemaître;
Y. Lemaître
3
THALES Research and Technology, Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
, 91767 Palaiseau Cedex, France
Search for other works by this author on:
B. Marcilhac;
B. Marcilhac
3
THALES Research and Technology, Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
, 91767 Palaiseau Cedex, France
Search for other works by this author on:
D. Crété
;
D. Crété
3
THALES Research and Technology, Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
, 91767 Palaiseau Cedex, France
Search for other works by this author on:
J. Kermorvant
J. Kermorvant
4
THALES SIX GTS France
, 4 Avenue des Louvresses, 92230 Gennevilliers, France
Search for other works by this author on:
A. Labbé
1
E. Parzy
1
E. Thiaudière
1
P. Massot
1
J.-M. Franconi
1
C. Ulysse
2
Y. Lemaître
3
B. Marcilhac
3
D. Crété
3
J. Kermorvant
4
1
Center of Magnetic Resonance of Biological Systems, UMR 5536 CNRS, Université de Bordeaux
, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
2
Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay
, C2N—Marcoussis, 91460 Marcoussis, France
3
THALES Research and Technology, Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay
, 91767 Palaiseau Cedex, France
4
THALES SIX GTS France
, 4 Avenue des Louvresses, 92230 Gennevilliers, France
J. Appl. Phys. 124, 214503 (2018)
Article history
Received:
May 14 2018
Accepted:
November 08 2018
Citation
A. Labbé, E. Parzy, E. Thiaudière, P. Massot, J.-M. Franconi, C. Ulysse, Y. Lemaître, B. Marcilhac, D. Crété, J. Kermorvant; Effects of flux pinning on the DC characteristics of meander-shaped superconducting quantum interference filters with flux concentrator. J. Appl. Phys. 7 December 2018; 124 (21): 214503. https://doi.org/10.1063/1.5040051
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Decoding diffraction and spectroscopy data with machine learning: A tutorial
D. Vizoso, R. Dingreville
Related Content
High-Tc superconducting detector for highly-sensitive microwave magnetometry
Appl. Phys. Lett. (May 2019)
Multilayer MgB2 superconducting quantum interference filter magnetometers
Appl. Phys. Lett. (April 2016)
Fraunhofer regime of operation for superconducting quantum interference filters
Appl. Phys. Lett. (December 2008)
Voltage response of non-uniform arrays of bi-superconductive quantum interference devices
J. Appl. Phys. (May 2012)
Quadratic mixing of radio frequency signals using superconducting quantum interference filters
Appl. Phys. Lett. (August 2006)