Cavitation bubbles could also be called as inertial bubbles because of their oscillation due to the pressure difference between inside and outside. After the passage of an underwater shock wave, the violent collapses of the bubbles are induced and could produce stronger mechanical and biochemical actions so that the marine bacteria around them are inactivated by those productions. In the present study, cavitation inertial bubbles are observed behind multiple waves in a narrow water chamber after an electric discharge is triggered and then interacts with underwater reflected shock waves from the water chamber. The sterilization effects of only these oscillating bubbles and cavitation-shock interaction are investigated by bio-experiments of marine Vibrio sp. The results show that a high sterilization is obtained in the case of the cavitation-shock interaction. Furthermore, the chemical action of free radicals mainly contributes to inactivating the marine bacteria. The generation of the hydroxyl (OH) radicals is clarified by measuring the concentration of H2O2. Subsequently, we focus on a theoretical analysis of the generation condition of the OH radicals by a bubble dynamic model consisting of an oscillation model and an impact model. Finally, the theoretical estimation by the bubble dynamic model is discussed under the conditions of the present experiments. As a result, there is a possibility of effective sterilization by the cavitation-shock interaction without the supply of air microbubbles.

1.
A.
Abe
and
H.
Mimura
, “
Sterilization of ships’ ballast water, bubble dynamics and shock waves
,” in
Bubble Dynamics and Shock Waves, SHOCK WAVES 8
(
Springer
,
Berlin
,
2013
), pp.
339
362
.
2.
W. D.
Song
,
M. H.
Hong
,
B.
Lukyanchuk
, and
C. T.
Chong
, “
Laser-induced cavitation bubbles for cleaning of solid surfaces
,”
J. Appl. Phys.
95
,
2925
2956
(
2004
).
3.
K.
Takayama
, “
Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy
,”
Jpn. J. Appl. Phys.
32
,
2192
2198
(
1993
).
4.
C.
Xu
,
Y.
Wang
,
C.
Huang
,
J.
Huang
, and
C.
Yu
, “
The effect of free surface on cloud cavitating flow around a blunt body
,”
J. Hydrodynam.
29
,
979
986
(
2017
).
5.
M.
Lokhandwalla
and
B.
Sturtevant
, “
Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields
,”
Phys. Med. Biol.
46
,
413
437
(
2001
).
6.
S.
Gao
,
G. D.
Lewis
,
M.
Ashokkumar
, and
Y.
Hemar
, “
Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism
,”
Ultrason. Sonochem.
21
,
454
460
(
2014
).
7.
K. A.
Morch
, “
Cavitation nuclei: Experiments and theory
,”
J. Hydrodynam.
21
,
176
189
(
2009
).
8.
J.
Wang
and
A.
Abe
, “
Experimental verification of shock sterilization for marine Vibrio sp. using microbubbles interacting with underwater shock waves
,”
J. Mar. Sci. Technol.
21
,
679
688
(
2016
).
9.
J.
Wang
,
A.
Abe
,
Y.
Wang
, and
C.
Huang
, “
Fundamental study of sterilization effects on marine Vibrio sp. in a cylindrical water chamber with supply of only underwater shock waves
,”
Ultrason. Sonochem.
42
,
541
550
(
2018
).
10.
L.
Beneš
,
Z.
Ďuračková
, and
M.
Ferenčik
, “
Chemistry, physiology and pathology of free radicals
,”
Life Sci.
65
,
1865
1874
(
1999
).
11.
M.
Bai
,
Z.
Zhang
,
X.
Xue
,
X.
Yang
,
L.
Hua
, and
D.
Fan
, “
Killing effects of hydroxyl radical on algae and bacteria in ship’s ballast water and on their cell morphology
,”
Plasma Chem. Plasma Proc.
30
,
831
840
(
2010
).
12.
A.
Abe
,
H.
Mimura
,
H.
Ishida
, and
K.
Yoshida
, “
The effect of shock pressures on the inactivation of a marine Vibrio sp
,”
Shock Waves
17
,
143
151
(
2007
).
13.
A.
Abe
,
K.
Ohtani
,
K.
Takayama
,
S.
Nishio
,
H.
Mimura
, and
M.
Takeda
, “
Pressure generation from micro-bubble collapse at shock wave loading
,”
J. Fluid Sci. Technol.
5
,
235
246
(
2010
).
14.
M.
Delius
,
F.
Ueberle
, and
W.
Eisenmenger
, “
Extracorporeal shock waves act by shock wave-gas bubble interaction
,”
Ultrasound Med. Biol.
24
,
1055
1059
(
1998
).
15.
A. M.
Loske
,
U. M.
Alvarez
,
C.
Hernández-Galicia
,
E.
Castaño-Tostado
, and
F. E.
Prieto
, “
Bactericidal effect of underwater shock waves on Escherichia coli ATCC 10536 suspensions
,”
Innov. Food Sci. Emerg. Technol.
3
,
321
327
(
2002
).
16.
M.
Lokhandwalla
and
B.
Sturtevant
, “
Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields
,”
Phys. Med. Biol.
46
,
413
437
(
2001
).
17.
G. N.
Sankin
,
W. N.
Simmons
,
S. L.
Zhu
, and
P.
Zhong
, “
Shock wave interaction with laser-generated single bubbles
,”
Phys. Rev. Lett.
95
,
034501
(
2005
).
18.
G. N.
Sankin
and
P.
Zhong
, “
Interaction between shock wave and single inertial bubbles near an elastic boundary
,”
Phys. Rev. E
74
,
046304
(
2006
).
19.
J. I.
Iloreta
,
N. M.
Fung
, and
A. J.
Szeri
, “
Dynamic of bubble near a rigid surface subjected to lithotripter shock wave. Part 1. Consequences of interference between incident and reflected waves
,”
J. Fluid Mech.
616
,
43
61
(
2008
).
20.
E.
Klaseboer
,
S. W.
Fong
,
C. K.
Turangan
,
B. C.
Khoo
,
A. J.
Szeri
,
M.
Calvisi
,
G. N.
Sankin
, and
P.
Zhong
, “
Interaction of lithotripter shockwaves with single inertial cavitation bubbles
,”
J. Fluid Mech.
593
,
33
56
(
2007
).
21.
T.
Koita
,
K.
Hayashi
, and
M.
Sun
, “
Experimental study of underwater shock wave and cavitation generated by underwater electric discharge in a narrow container
,” in
Proceedings of the 29th International Symposium on Shock Waves
(Springer,
2015
), Vol.
2
, pp.
1505
1510
.
22.
J.
Wang
,
A.
Abe
,
T.
Koita
, and
M.
Sun
, “
Contribution of cavitation generation to shock wave sterilization effects in a narrow water chamber
,” in
The Proceedings of 31th International Symposium on Shock Waves on Shock Waves 2
(in press).
23.
Y.
Huang
,
J.
Wang
,
A.
Abe
,
Y.
Wang
,
T.
Du
, and
C.
Huang
, “
A theoretical model to estimate inactivation effects of OH radicals on marine Vibrio sp. in bubble-shock interaction
,”
Ultrason. Sonochem.
(in press).
24.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
483
(
2002
).
25.
R.
Toegel
,
B.
Gompf
,
R.
Pecha
, and
D.
Lohse
, “
Does water vapor prevent upscaling sonoluminescence
,”
Phys. Rev. Lett.
85
,
3165
3168
(
2000
).
26.
R.
Toegel
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume
,”
Phys. Rev. Lett.
88
,
034301
(
2002
).
27.
K.
Yasui
and
K.
Kato
, “
Bubble dynamics and sonoluminescence from helium and xenon in mercury and water
,”
Phys. Rev. E
86
,
036320
(
2012
).
28.
R.
Toegel
and
D.
Lohse
, “
Phase diagrams for sonoluminescing bubbles: A comparision between experiment and thoery
,”
J. Chem. Phys.
118
,
1863
1875
(
2002
).
29.
M.
Dular
and
O.
Coutierdelgosha
, “
Thermodynamic effects during growth and collapse of a single cavitation bubble
,”
J. Fluid Mech.
736
,
44
66
(
2013
).
30.
C.
Herring
,
Theory of the Pulsations of the Gas Bubble Produced by an Underwater Explosion
(
Columbia Univ., Division of National Defense Research
,
1941
).
31.
J.
Wang
,
A.
Abe
,
S.
Nishio
,
Y.
Wang
, and
C.
Huang
, “
Sequential observation of rebound shock wave generated by collapse of vapor bubble in BOS system
,”
J. Vis.
12
,
695
710
(
2018
).
32.
J.
Wang
and
A.
Abe
, “
A hybrid analytical model of sterilization effect on marine bacteria using microbubbles interacting with shock wave
,”
J. Mar. Sci. Technol.
21
,
385
395
(
2016
).
33.
M.
Takahashi
,
K.
Chiba
, and
P.
Li
, “
Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus
,”
J. Phys. Chem. B
111
,
1343
1347
(
2007
).
34.
A.
Brujan
and
G. A.
Williams
, “
Luminescence spectra of laser-induced cavitation bubbles near rigid boundaries
,”
Phys. Rev. E
72
,
016304
(
2005
).
35.
A.
Brujan
,
D. S.
Hecht
,
F.
Lee
, and
G. A.
Williams
, “
Properties of luminescence from laser-created bubbles in pressurized water
,”
Phys. Rev. E
72
,
066310
(
2005
).
36.
A.
Brujan
, “
Stress wave emission from plasmonic nanobubbles
,”
J. Phys. D Appl. Phys.
50
,
015304
(
2017
).
37.
E.
Johnsen
and
T.
Colonius
, “
Shock-induced collapse of a gas bubble in shock wave lithotripsy
,”
J. Acous. Soc. Am.
124
,
2011
2020
(
2008
).
38.
O.
Supponen
,
D.
Obreschkow
,
M.
Tinguely
,
P.
Kobel
,
N.
Dorsaz
, and
M.
Farhat
, “
Scaling laws for jets of single cavitation bubbles
,”
J. Fluid Mech.
802
,
263
293
(
2016
).
39.
D.
Obreschkow
,
M.
Tinguely
,
N.
Dorsaz
,
P.
Kobel
,
A. D.
Bosset
, and
M.
Farhat
, “
A universal scaling law for jets of collapsing bubbles
,”
Phys. Rev. Lett.
107
,
204501
(
2011
).
40.
O.
Supponen
,
D.
Obreschkow
,
P.
Kobel
,
N.
Dorsaz
, and
M.
Farhat
, “
Luminescence from cavitation bubbles deformed in uniform pressure gradients
,”
Phys. Rev. E
96
,
033114
(
2017
).
You do not currently have access to this content.