In this work, we investigate an unexplored possibility of passivating the charged surface states on AlGaN/GaN high electron mobility transistor (HEMT) heterostructures by using organic molecules. This has further led to remarkable enhancement in the electrical properties of rectifying metal-semiconductor contacts on AlGaN/GaN. Phenol functionalized Zinc metallated-Tetra Phenyl Porphyrin (Zn-TPPOH) organic molecules were adsorbed on AlGaN/GaN via the solution phase to form a molecular layer (MoL). The presence of the MoL was confirmed using X-ray Photoelectron Spectroscopy (XPS). The thickness of the MoL was assessed as ∼1 nm, using Spectroscopic Ellipsometry and cross-sectional Transmission Electron Microscopy. XPS peak-shift analyses together with Kelvin Probe Force Microscopy revealed that the molecular surface modification reduced the surface potential of AlGaN by approximately 250 meV. Consequently, the Barrier height (ideality factor) of Ni Schottky diodes on AlGaN/GaN was increased (reduced) significantly from 0.91 ± 0.05 eV (2.5 ± 0.31) for Ni/AlGaN/GaN to 1.37 ± 0.03 eV (1.4 ± 0.29) for Ni/Zn-TPPOH/AlGaN/GaN. In addition, a noteworthy decrement in the reverse current from 2.6 ± 1.93 μA to 0.31 ± 0.19 nA at −5 V (∼10 000 times) was observed from Current-Voltage (I-V) measurements. This surface-modification process can be fruitful for improving the performance of AlGaN/GaN HEMTs, mitigating the adverse effects of surface states and polarization in these materials.

1.
T.
Mimura
,
IEEE Trans. Microw. Theory Tech.
50
,
780
(
2002
).
2.
O.
Hammi
and
F. M.
Ghannouchi
, in
Proceedings of the 16th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
(IEEE,
Yasmine Hammamet
,
2009
), p.
379
.
3.
T.
Oka
and
T.
Nozawa
,
IEEE Electron Device Lett.
29
,
668
(
2008
).
4.
X.-D.
Wang
,
W.-D.
Hu
,
X.-S.
Chen
, and
W.
Lu
,
IEEE Trans. Electron Devices
59
,
1393
(
2012
).
5.
P.
Lagger
,
M.
Reiner
,
D.
Pogany
, and
C.
Ostermaier
,
IEEE Trans. Electron Devices
61
,
1022
(
2014
).
6.
Y.
Tang
,
K.
Shinohara
,
D.
Regan
,
A.
Corrion
,
D.
Brown
,
J.
Wong
,
A.
Schmitz
,
H.
Fung
,
S.
Kim
, and
M.
Micovic
,
IEEE Electron Device Lett.
36
,
549
(
2015
).
7.
M. A.
Khan
,
A.
Bhattarai
,
J. N.
Kuznia
, and
D. T.
Olson
,
Appl. Phys. Lett.
63
,
1214
(
1993
).
8.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
A. J.
Sierakowski
,
W. J.
Schaff
, and
L. F.
Eastman
,
J. Appl. Phys.
87
,
334
(
2000
).
9.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
,
Proc. IEEE
90
,
1022
(
2002
).
10.
J. P.
Ibbetson
,
P. T.
Fini
,
K. D.
Ness
,
S. P.
Denbaars
,
J. S.
Speck
, and
U. K.
Mishra
,
Appl. Phys. Lett.
77
,
250
(
2000
).
11.
F.
Qian
,
D.
Kai
,
L. Y.
Kun
,
S.
Peng
, and
F.
Qing
,
Chin. Phys. Lett.
30
,
127302
(
2013
).
12.
A.
Kumar
,
R.
Kapoor
,
M.
Garg
,
V.
Kumar
, and
R.
Singh
,
Nanotechnology
28
,
26LT02
(
2017
).
13.
R.
Vetury
,
N. Q.
Zhang
,
S.
Keller
, and
U. K.
Mishra
,
IEEE Trans. Electron Devices
48
,
560
(
2001
).
14.
M.
Gassoumi
,
B.
Grimbert
,
C.
Gaquiere
, and
H.
Maaref
,
Semiconductors
46
,
382
(
2012
).
15.
T.
Hashizume
,
S.
Ootomo
, and
H.
Hasegawa
,
Appl. Phys. Lett.
83
,
2952
(
2003
).
16.
Y.
Hori
,
Z.
Yatabe
, and
T.
Hashizume
,
J. Appl. Phys.
114
,
244503
(
2013
).
17.
M.
Matys
,
S.
Kaneki
,
K.
Nishiguchi
,
B.
Adamowicz
, and
T.
Hashizume
,
J. Appl. Phys.
122
,
224504
(
2017
).
18.
S.
Heikman
,
S.
Keller
,
Y.
Wu
,
J. S.
Speck
,
S. P.
DenBaars
, and
U. K.
Mishra
,
J. Appl. Phys.
93
,
10114
(
2003
).
19.
B. S.
Eller
,
J.
Yang
, and
R. J.
Nemanich
,
J. Electron. Mater.
43
,
4560
(
2014
).
20.
R. T.
Tung
,
Phys. Rev. B
64
,
205310
(
2001
).
21.
A.
Rizzi
,
M.
Kocan
,
J.
Malindretos
,
A.
Schildknecht
,
N.
Teofilov
,
K.
Thonke
, and
R.
Sauer
,
Appl. Phys. A
87
,
505
(
2007
).
22.
B. K.
Li
,
M. J.
Wang
,
K. J.
Chen
, and
J. N.
Wang
,
Phys. Status Solidi C
7
,
1961
(
2010
).
23.
F.
Schreiber
,
Prog. Surf. Sci.
65
,
151
(
2000
).
24.
M.
Jurow
,
A. E.
Schuckman
,
J. D.
Batteas
, and
C. M.
Drain
,
Coord. Chem. Rev.
254
,
2297
(
2010
).
25.
T.
Aqua
,
H.
Cohen
,
O.
Sinai
,
V.
Frydman
,
T.
Bendikov
,
D.
Krepel
,
O.
Hod
,
L.
Kronik
, and
R.
Naaman
,
J. Phys. Chem. C
115
,
24888
(
2011
).
26.
T.
Schultz
,
R.
Schlesinger
,
J.
Niederhausen
,
F.
Henneberger
,
S.
Sadofev
,
S.
Blumstengel
,
A.
Vollmer
,
F.
Bussolotti
,
J.-P.
Yang
,
S.
Kera
,
K.
Parvez
,
N.
Ueno
,
K.
Mullen
, and
N.
Koch
,
Phys. Rev. B
93
,
125309
(
2016
).
27.
S.
Bastide
,
R.
Butruille
,
D.
Cahen
,
A.
Dutta
,
J.
Libman
,
A.
Shanzer
,
L.
Sun
, and
A.
Vilan
,
J. Phys. Chem. B
101
,
2678
(
1997
).
28.
I.
Borriello
,
G.
Cantele
,
D.
Ninno
,
G.
Iadonisi
,
M.
Cossi
, and
V.
Barone
,
Phys. Rev. B
76
,
035430
(
2007
).
29.
R.
Cohen
,
N.
Zenou
,
D.
Cahen
, and
S.
Yitzchaik
,
Chem. Phys. Lett.
279
,
270
(
1997
).
30.
A.
Vilan
,
A.
Shanzer
, and
D.
Cahen
,
Nature
404
,
166
(
2000
).
32.
H.
Haick
,
M.
Ambrico
,
T.
Ligonzo
, and
D.
Cahen
,
Adv. Mater.
16
,
2145
(
2004
).
33.
M.
Garg
,
T. R.
Naik
,
C. S.
Pathak
,
V. R.
Rao
, and
R.
Singh
,
Appl. Phys. Lett.
112
,
163502
(
2018
).
34.
M. A.
Khaderbad
,
R.
Pandharipande
,
V.
Singh
,
S.
Madhu
,
M.
Ravikanth
, and
V. R.
Rao
,
IEEE Trans. Electron Devices
59
,
1963
(
2012
).
35.
M. A.
Khaderbad
,
V.
Tjoa
,
M.
Rao
,
R.
Phandripande
,
S.
Madhu
,
J.
Wei
,
M.
Ravikanth
,
N.
Mathews
,
S. G.
Mhaisalkar
, and
V. R.
Rao
,
ACS Appl. Mater. Interfaces
4
,
1434
(
2012
).
36.
B.
Baur
,
J.
Howgate
,
H.-G.
von Ribbeck
,
Y.
Gawlina
,
V.
Bandalo
,
G.
Steinhoff
,
M.
Stutzmann
, and
M.
Eickhoff
,
Appl. Phys. Lett.
89
,
183901
(
2006
).
37.
B. S.
Kang
,
H. T.
Wang
,
F.
Ren
, and
S. J.
Pearton
,
J. Appl. Phys.
104
,
031101
(
2008
).
38.
M. A.
Khaderbad
,
U.
Roy
,
M.
Yedukondalu
,
M.
Rajesh
,
M.
Ravikanth
, and
V. R.
Rao
,
IEEE Trans. Nanotechnol.
9
,
335
(
2010
).
39.
L.
Rosenberger
,
R.
Baird
,
E.
McCullen
,
G.
Aunerc
, and
G.
Shreve
,
Surf. Interface Anal.
40
,
1254
(
2008
).
40.
J. A.
Rotole
and
P. M. A.
Sherwood
,
Surf. Sci. Spectra
5
,
32
(
1998
).
41.
Y.-J.
Lin
,
H.-Y.
Lee
,
F.-T.
Hwang
, and
C.-T.
Lee
,
J. Electron. Mater.
30
,
532
(
2001
).
42.
X.
Zhang
and
S.
Ptasinska
,
Sci. Rep.
6
,
24848
(
2016
).
43.
V.
Matolín
,
S.
Fabík
,
J.
Glosík
,
L.
Bideux
,
Y.
Ould-Metidji
, and
B.
Gruzza
,
Vacuum
76
,
471
(
2004
).
44.
D. K.
Lavallee
,
J.
Brace
, and
N.
Winograd
,
Inorg. Chem.
18
,
1776
(
1979
).
45.
G.
Moldovan
,
I.
Harrison
,
M.
Roe
, and
P. D.
Brown
, in
Presented at The Electron microscopy and analysis 2003: Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference
(
University of Oxford
,
2003
), September, p.
115
.
46.
S. J.
Kerber
,
J. J.
Bruckner
,
K.
Wozniak
,
S.
Seal
,
S.
Hardcastle
, and
T. L.
Barr
,
J. Vac. Sci. Technol. A
14
,
1314
(
1996
).
47.
L.
Chen
,
Z.
Xu
,
J.
Li
,
Y.
Li
,
M.
Shan
,
C.
Wang
,
Z.
Wang
,
Q.
Guo
,
L.
Liu
,
G.
Chen
, and
X.
Qian
,
J. Mater. Chem.
22
,
13460
(
2012
).
48.
X.
Zhang
and
S.
Ptasinska
,
Phys. Chem. Chem. Phys.
17
,
3909
(
2015
).
49.
A.
Vilan
,
J.
Ghabboun
, and
D.
Cahen
,
J. Phys. Chem. B
107
,
6360
(
2003
).
50.
T.
Ishizaki
,
N.
Saito
,
L.
SunHyung
,
K.
Ishida
, and
O.
Takai
,
Langmuir
22
,
9962
(
2006
).
51.
P. K. B.
Palomaki
,
A.
Krawicz
, and
P. H.
Dinolfo
,
Langmuir
27
,
4613
(
2011
).
52.
R. M. A.
Azzam
, and
N. M.
Bashara
, (
North-Holland Publishing Co
,
New York
,
1977
).
53.
A.
Kumar
,
S.
Vinayak
, and
R.
Singh
,
Curr. Appl. Phys.
13
,
1137
(
2013
).
54.
W.
Melitz
,
J.
Shen
,
A. C.
Kummel
, and
S.
Lee
,
Surf. Sci. Rep.
66
,
1
(
2011
).
55.
S.
Hudlet
,
M. S.
Jean
,
B.
Roulet
,
J.
Berger
, and
C.
Guthmann
,
J. Appl. Phys.
77
,
3308
(
1995
).
56.
E. H.
Rhoderick
,
IEE Proc. I Solid State Electron Devices
129
,
1
(
1982
).
57.
X.
Wang
,
H.
Liu
,
C.
Fei
,
L.
Zhao
,
S.
Chen
, and
S.
Wang
,
AIP Adv.
6
,
065224
(
2016
).
58.
O.
Ambacher
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
L.
Wittmer
,
M.
Stutzmann
,
W.
Rieger
, and
J.
Hilsenbeck
,
J. Appl. Phys.
85
,
3222
(
1999
).
59.
H. X.
Guang
,
Z. D.
Gang
, and
J. D.
Sheng
,
Chin. Phys. B
24
,
067301
(
2015
).
60.
A.
Kumar
,
T.
Singh
,
M.
Kumar
, and
R.
Singh
,
Curr. Appl. Phys.
14
,
491
(
2014
).
61.
L. E.
Black
, “
New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface
” (
Springer International Publishing
,
Cham
,
2016
), p.
15
.
62.
Z.
Lin
and
W.
Lu
,
J. Appl. Phys.
99
,
014504
(
2006
).
63.
A.
Natan
,
L.
Kronik
,
H.
Haick
, and
R. T.
Tung
,
Adv. Mater.
19
,
4103
(
2007
).
64.
G.
Ashkenasy
,
D.
Cahen
,
R.
Cohen
,
A.
Shanzer
, and
A.
Vilan
,
Acc. Chem. Res.
35
,
121
(
2002
).
65.
L.
Shen
,
X.
Cheng
,
Z.
Wang
,
C.
Xia
,
D.
Cao
,
L.
Cheng
,
Q.
Wang
, and
Y.
Yu
,
RSC Adv.
5
,
86593
(
2015
).
You do not currently have access to this content.