We demonstrate a flip-chip device for performing low-temperature acoustoelectric measurements on exfoliated two-dimensional materials. With this device, we study gate-tunable acoustoelectric transport in an exfoliated monolayer graphene device, measuring the voltage created as high-frequency surface acoustic waves dynamically drive the graphene charge carriers, the density of which we simultaneously control with a silicon back-gate. We demonstrate ambipolar dependence of the acoustoelectric signal, as expected from the sign of the graphene charge carriers. We observe a marked reduction in the magnitude of the acoustoelectric signal over a well-defined range of density in the vicinity of charge neutrality, which we attribute to a spatially heterogeneous charge-disorder landscape not directly revealed by conventional transport measurements.

1.
A.
Wixforth
,
J. P.
Kotthaus
, and
G.
Weimann
,
Phys. Rev. Lett.
56
,
2104
(
1986
).
2.
A.
Wixforth
,
J.
Scriba
,
M.
Wassermeier
,
J. P.
Kotthaus
,
G.
Weimann
, and
W.
Schlapp
,
Phys. Rev. B
40
,
7874
(
1989
).
3.
A.
Esslinger
,
A.
Wixforth
,
R. W.
Winkler
,
J. P.
Kotthaus
,
H.
Nickel
,
W.
Schlapp
, and
R.
Lösch
,
Solid State Commun.
84
,
939
(
1992
).
4.
I. V.
Kukushkin
,
V.
Umansky
,
K.
von Klitzing
, and
J. H.
Smet
,
Phys. Rev. Lett.
106
,
206804
(
2011
).
5.
J.
Pollanen
,
J.
Eisenstein
,
L.
Pfeiffer
, and
K.
West
,
Phys. Rev. B
94
,
245440
(
2016
).
6.
B.
Friess
,
Y.
Peng
,
B.
Rosenow
,
F.
von Oppen
,
V.
Umansky
,
K.
von Klitzing
, and
J. H.
Smet
,
Nat. Phys.
13
,
1124
1129
(
2017
).
7.
M. A.
Paalanen
,
R. L.
Willett
,
P. B.
Littlewood
,
R. R.
Ruel
,
K. W.
West
,
L. N.
Pfeiffer
, and
D. J.
Bishop
,
Phys. Rev. B
45
,
11342
(
1992
).
8.
I. L.
Drichko
,
I. Y.
Smirnov
,
A. V.
Suslov
,
L. N.
Pfeiffer
,
K. W.
West
, and
Y. M.
Galperin
,
Phys. Rev. B
92
,
205313
(
2015
).
9.
A. V.
Suslov
,
I. L.
Drichko
,
I. Y.
Smirnov
,
A. F.
Ioffe
,
L. N.
Pfeiffer
,
K. W.
West
, and
Y. M.
Galperin
,
J. Acoust. Soc. Am.
138
,
1938
(
2015
).
10.
R. L.
Willett
,
R. R.
Ruel
,
M. A.
Pallanan
,
K. W.
West
, and
L.
Pfeiffer
,
Phys. Rev. B
47
,
7344
(
1993
).
11.
R. L.
Willett
,
R. R.
Ruel
,
K. W.
West
, and
L. N.
Pfeiffer
,
Phys. Rev. Lett.
71
,
3846
(
1993
).
12.
L.
Tracy
,
J.
Eisenstein
,
M.
Lilly
,
L.
Pfeiffer
, and
K.
West
,
Solid State Commun.
137
,
150
(
2006
).
13.
P.
Thalmeier
,
B.
Dóra
, and
K.
Ziegler
,
Phys. Rev. B
81
,
041409
(
2010
).
14.
S. H.
Zhang
and
W.
Xu
,
AIP Adv.
1
,
022146
(
2011
).
15.
J.
Schiefele
,
J.
Pedrós
,
F.
Sols
,
F.
Calle
, and
F.
Guinea
,
Phys. Rev. Lett.
111
,
237405
(
2013
).
16.
Z.
Insepov
,
E.
Emelin
,
O.
Kononenko
,
D. V.
Roshchupkin
,
K. B.
Tnyshtykbayev
, and
K. A.
Baigarin
,
Appl. Phys. Lett.
106
,
023505
(
2015
).
17.
K.
Dompreh
,
N.
Mensah
, and
S.
Mensah
,
Physica E
85
,
160
(
2017
).
18.
V.
Miseikis
,
J. E.
Cunningham
,
K.
Saeed
,
R.
O’Rorke
, and
A. G.
Davies
,
App. Phys. Lett.
100
,
133105
(
2012
).
19.
V.
Miseikis
, “The interaction of graphene with high-frequency acoustic and electromagnetic waves,” Ph.D. thesis (University of Leeds, 2012).
20.
L.
Bandhu
,
L. M.
Lawton
, and
G. R.
Nash
,
Appl. Phys. Lett.
103
,
133101
(
2013
).
21.
P. V.
Santos
,
T.
Schumann
,
M. H.
Oliveria, Jr.
,
J. M. J.
Lopes
, and
H.
Riechert
,
Appl. Phys. Lett.
102
,
221907
(
2013
).
22.
A.
Mayorov
,
N. H. W.
Muchenje
,
C.
Wood
,
M.
Rosamond
,
E.
Linfield
,
A.
Davies
, and
J.
Cunningham
,
Appl. Phys. Lett.
104
,
083509
(
2014
).
23.
L.
Bandhu
and
G.
Nash
,
Appl. Phys. Lett.
105
,
263106
(
2014
).
24.
T.
Poole
,
L.
Bandhu
, and
G.
Nash
,
Appl. Phys. Lett.
106
,
133107
(
2015
).
25.
L.
Bandhu
and
G. R.
Nash
,
Nano Res.
9
,
685
(
2016
).
26.
S.
Zheng
,
H.
Zhang
,
Z.
Feng
,
Y.
Yu
,
R.
Zhang
,
C.
Sun
,
J.
Liu
,
X.
Duan
,
W.
Pang
, and
D.
Zhang
,
Appl. Phys. Lett.
109
,
183110
(
2016
).
27.
S.
Okuda
,
T.
Ikuta
,
Y.
Kanai
,
T.
Ono
,
S.
Ogawa
,
D.
Fujisawa
,
M.
Shimatani
,
K.
Inoue
,
K.
Maehashi
, and
K.
Matsumoto
,
Appl. Phys. Express
9
,
045104
(
2016
).
28.
T.
Poole
and
G. R.
Nash
,
Sci. Rep.
7
,
1767
(
2017
).
29.
C.
Tang
,
Y.
Chen
,
D.
Ling
,
C.
Chi
, and
J.
Chen
,
J. Appl. Phys.
121
,
124505
(
2017
).
30.
J.
Liang
,
X.
Yang
,
S.
Zheng
,
C.
Sun
,
M.
Zhang
,
H.
Zhang
,
D.
Zhang
, and
W.
Pang
,
App. Phys. Lett.
110
,
243504
(
2017
).
31.
J. M.
Shilton
,
V. I.
Talyanskii
,
M.
Pepper
,
D. A.
Ritchie
,
J. E. F.
Frost
,
C. J. B.
Ford
,
C. G.
Smith
, and
G. A. C.
Jones
,
J. Phys. Condens. Matter
8
,
L531
(
1996
).
32.
N. E.
Fletcher
,
J.
Ebbecke
,
T. J. B. M.
Janssen
,
F. J.
Ahlers
,
M.
Pepper
,
H. E.
Beere
, and
D. A.
Ritchie
,
Phys. Rev. B
68
,
245310
(
2003
).
33.
M.
Kataoka
,
M. R.
Astley
,
A. L.
Thorn
,
D. K. L.
Oi
,
C. H. W.
Barnes
,
C. J. B.
Ford
,
D.
Anderson
,
G. A. C.
Jones
,
I.
Farrer
,
D. A.
Ritchie
, and
M.
Pepper
,
Phys. Rev. Lett.
102
,
156801
(
2009
).
34.
E.
Preciado
,
F. J. R.
Schülein
,
A. E.
Nguyen
,
D.
Barroso
,
M.
Isarraraz
,
G.
von Son
,
I.-H.
Lu
,
W.
Michailow
,
B.
Möller
,
V.
Klee
,
J.
Mann
,
A.
Wixforth
,
L.
Bartels
, and
H. J.
Krenner
,
Nat. Commun.
6
,
8593
(
2015
).
35.
A. L.
Efros
and
Y. M.
Galperin
,
Phys. Rev. Lett.
64
,
1959
(
1990
).
36.
A.
Esslinger
,
R.
Winkler
,
C.
Rocke
,
A.
Wixforth
,
J.
Kotthaus
,
H.
Nickel
,
W.
Schlapp
, and
R.
Lösch
,
Surf. Sci.
305
,
83
(
1994
).
37.
J. M.
Shilton
,
D. R.
Mace
,
V. I.
Talyanskii
,
M. Y.
Simmons
,
M.
Pepper
,
A. C.
Churchill
, and
D. A.
Ritchie
,
J. Phys. Condens. Matter
7
,
7675
(
1995
).
38.
M.
Rotter
,
A.
Wixforth
,
W.
Ruile
,
D.
Bernklau
, and
H.
Riechert
,
Appl. Phys. Lett.
73
,
2128
(
1998
).
39.
J.
Ebbecke
,
N. E.
Fletcher
,
T. J. B. M.
Janssen
,
H. E.
Beere
,
D. A.
Ritchie
, and
M.
Pepper
,
Phys. Rev. B
72
,
121311(R)
(
2005
).
40.
In this geometry, the SAW propagation direction is in the crystallographic x-direction.
41.
A.
Schenstrom
,
Y.
Qian
,
M.-F.
Xu
,
H.-P.
Baum
,
M.
Levy
, and
B. K.
Sarma
,
Solid State Commun.
65
,
739
(
1988
).
42.
G. S.
Kino
and
T. M.
Reeder
,
IEEE Trans. Electron. Devices
18
,
909
(
1971
).
43.
A.
Wixforth
,
J.
Scriba
,
M.
Wassermeier
, and
J. P.
Kotthaus
,
J. Appl. Phys.
64
,
2213
(
1988
).
44.
B.
Keyan
,
B. A.
Schmidt
,
S.
Gaucher
,
D.
Laroche
,
M. P.
Lilly
,
J. L.
Reno
,
K. W.
West
,
L. N.
Pfeiffer
, and
G.
Gervais
,
Sci. Rep.
5
,
13494 EP
(
2015
).
45.
We note that mass loading alone from the SiO2/Si substrate would tend to reduce the resonant response of the SAW delay line. However, since the resonance frequency is shifted slightly higher by 5 MHz, we conclude that stiffening of the lithium niobate crystal due to strain and cooling to low temperatures dominate mass loading by the SiO2/Si substrate.
46.
Consistent behavior was observed using the other leads on the device.
47.
M. R.
Astley
,
M.
Kataoka
,
R. J.
Schneble
,
C. J. B.
Ford
,
C. H. W.
Barnes
,
D.
Anderson
,
G. A. C.
Jones
,
H. E.
Beere
,
D. A.
Ritchie
, and
M.
Pepper
,
Appl. Phys. Lett.
89
,
132102
(
2006
).
48.
J.
Martin
,
N.
Akerman
,
G.
Ulbricht
,
T.
Lohmann
,
J. H.
Smet
,
K.
von Klitzing
, and
A.
Yacoby
,
Nat. Phys.
4
,
144
(
2008
).
49.
M.-Y.
Li
,
C.-C.
Tang
,
D.
Ling
,
C.
Chi
, and
J.-C.
Chen
,
J. Appl. Phys.
114
,
233703
(
2013
).
You do not currently have access to this content.