Strength and toughness are two crucial mechanical properties of a solid that determine its ability to function reliably without undergoing failure in extreme conditions. While hexagonal boron nitride (hBN) is known to be elastically isotropic in the linear regime of mechanical deformation, its directional response to extreme mechanical loading remains less understood. Here, using a combination of density functional theory calculations and molecular dynamics simulations, we show that strength and crack nucleation toughness of pristine hBN are strongly anisotropic and chirality dependent. They vary nonlinearly with the chirality of the lattice under symmetry breaking deformation, and the anisotropic behavior is retained over a large temperature range with a decreasing trend at higher temperatures. An atomistic analysis reveals that bond deformation and associated distortion of electron density are nonuniform in the nonlinear regime of mechanical deformation, irrespective of the loading direction. This nonuniformity forms the physical basis for the observed anisotropy under static conditions, whereas reduction in nonuniformity and thermal softening reduce anisotropy at higher temperatures. The chirality-dependent anisotropic effects are well predicted by inverse cubic polynomials.

1.
K.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T.
Booth
,
V.
Khotkevich
,
S.
Morozov
, and
A.
Geim
,
Proc. Natl. Acad. Sci.
102
,
10451
(
2005
).
2.
C.
Woods
,
L.
Britnell
,
A.
Eckmann
,
R.
Ma
,
J.
Lu
,
H.
Guo
,
X.
Lin
,
G.
Yu
,
Y.
Cao
,
R.
Gorbachev
et al.,
Nat. Phys.
10
,
451
(
2014
).
3.
F.
Withers
,
O.
Del Pozo-Zamudio
,
A.
Mishchenko
,
A.
Rooney
,
A.
Gholinia
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Haigh
,
A.
Geim
,
A.
Tartakovskii
et al.,
Nat. Mater.
14
,
301
(
2015
).
4.
G. R.
Bhimanapati
,
Z.
Lin
,
V.
Meunier
,
Y.
Jung
,
J.
Cha
,
S.
Das
,
D.
Xiao
,
Y.
Son
,
M. S.
Strano
,
V. R.
Cooper
et al.,
ACS Nano.
9
,
11509
(
2015
).
5.
S. M.
Kim
,
A.
Hsu
,
M. H.
Park
,
S. H.
Chae
,
S. J.
Yun
,
J. S.
Lee
,
D.-H.
Cho
,
W.
Fang
,
C.
Lee
,
T.
Palacios
et al.,
Nat. Commun.
6
,
8662
(
2015
).
6.
Z.
Liu
,
Y.
Gong
,
W.
Zhou
,
L.
Ma
,
J.
Yu
,
J. C.
Idrobo
,
J.
Jung
,
A. H.
MacDonald
,
R.
Vajtai
,
J.
Lou
, et al.,
Nat. Commun.
4
,
2541
(
2013
).
7.
K.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. C.
Neto
,
Science
353
,
aac9439
(
2016
).
8.
R.
Haubner
,
M.
Wilhelm
,
R.
Weissenbacher
, and
B.
Lux
, in High Performance Non-oxide Ceramics II (Springer, 2002), pp. 1–45.
9.
Q.
Peng
,
W.
Ji
, and
S.
De
,
Comput. Mater. Sci.
56
,
11
(
2012
).
10.
J.
Wu
,
B.
Wang
,
Y.
Wei
,
R.
Yang
, and
M.
Dresselhaus
,
Mater. Res. Lett.
1
,
200
(
2013
).
11.
J.
Los
,
J.
Kroes
,
K.
Albe
,
R.
Gordillo
,
M.
Katsnelson
, and
A.
Fasolino
,
Phys. Rev. B
96
,
184108
(
2017
).
12.
A.
Falin
,
Q.
Cai
,
E. J.
Santos
,
D.
Scullion
,
D.
Qian
,
R.
Zhang
,
Z.
Yang
,
S.
Huang
,
K.
Watanabe
,
T.
Taniguchi
et al.,
Nat. Commun.
8
,
15815
(
2017
).
13.
M.
Weber
,
E.
Coy
,
I.
Iatsunskyi
,
L.
Yate
,
P.
Miele
, and
M.
Bechelany
,
CrystEngComm
19
,
6089
(
2017
).
14.
M. Z.
Hossain
,
T.
Ahmed
,
B.
Silverman
,
M. S.
Khawaja
,
J.
Calderon
,
A.
Rutten
, and
S.
Tse
,
J. Mech. Phys. Solids
110
,
118
(
2018
).
15.
N.
Ding
,
C.-M. L.
Wu
, and
H.
Li
,
Phys. Chem. Chem. Phys.
16
,
23716
(
2014
).
16.
B.
Goodno
and
J.
Gere
,
Mechanics of Materials
(
Cengage Learning
,
2018
).
17.
T. L.
Anderson
,
Fracture Mechanics: Fundamentals and Applications
(
CRC Press
,
2017
).
18.
E. K.
Gross
and
R. M.
Dreizler
,
Density Functional Theory
(
Springer Science and Business Media
,
2013
), Vol. 337.
19.
S. S.
Han
,
J. K.
Kang
,
H. M.
Lee
,
A. C.
van Duin
, and
W. A.
Goddard III
,
J. Chem. Phys.
123
,
114703
(
2005
).
20.
X.
Qi-lin
,
L.
Zhen-huan
, and
T.
Xiao-geng
,
J. Phys. D Appl. Phys.
48
,
375502
(
2015
).
21.
R.
Kumar
,
G.
Rajasekaran
, and
A.
Parashar
,
Nanotechnology
27
,
085706
(
2016
).
22.
S.
Thomas
,
K.
Ajith
, and
M.
Valsakumar
,
Mater. Res. Express
4
,
065005
(
2017
).
23.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
24.
M.
Hossain
,
T.
Hao
, and
B.
Silverman
,
J. Phys. Condens. Matter
30
,
055901
(
2018
).
25.
26.
27.
S.
Plimpton
,
P.
Crozier
, and
A.
Thompson
,
Sandia Natl. Lab.
18
,
43
(
2007
).
28.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
29.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys. Condens. Matter
14
,
2745
(
2002
).
30.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
32.
L. J.
Bartolotti
and
R. G.
Parr
,
J. Chem. Phys.
72
,
1593
(
1980
).
33.
A.
Nagy
and
R. G.
Parr
,
Phys. Rev. A
42
,
201
(
1990
).
34.
D.
Tsai
,
J. Chem. Phys.
70
,
1375
(
1979
).
35.
R. C.
Andrew
,
R. E.
Mapasha
,
A. M.
Ukpong
, and
N.
Chetty
,
Phys. Rev. B
85
,
125428
(
2012
).
36.
M.
Mirnezhad
,
R.
Ansari
, and
H.
Rouhi
,
Superlattices Microstruct.
53
,
223
(
2013
).
37.
K. N.
Kudin
,
G. E.
Scuseria
, and
B. I.
Yakobson
,
Phys. Rev. B
64
,
235406
(
2001
).
38.
N.
Ohba
,
K.
Miwa
,
N.
Nagasako
, and
A.
Fukumoto
,
Phys. Rev. B
63
,
115207
(
2001
).
39.
L.
Song
,
L.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
et al.,
Nano Lett.
10
,
3209
(
2010
).
40.
S.
Mateti
,
K.
Yang
,
X.
Liu
,
S.
Huang
,
J.
Wang
,
L. H.
Li
,
P.
Hodgson
,
M.
Zhou
,
J.
He
, and
Y.
Chen
,
Adv. Funct. Mater.
28
,
1707556
(
2018
).
41.
I. R.
Storch
,
R.
De Alba
,
V. P.
Adiga
,
T.
Abhilash
,
R. A.
Barton
,
H. G.
Craighead
,
J. M.
Parpia
, and
P. L.
McEuen
,
Phys. Rev. B
98
,
085408
(
2018
).
42.
P.
Rowe
,
G.
Csányi
,
D.
Alfè
, and
A.
Michaelides
,
Phys. Rev. B
97
,
054303
(
2018
).
43.
J.
Los
,
A.
Fasolino
, and
M.
Katsnelson
,
npj 2D Mater. Appl.
1
,
9
(
2017
).
44.
N.
Ashcroft
, and
N.
Mermin
,
Solid State Physics
(
Saunders College
,
Philadelphia
,
1976
).

Supplementary Material

You do not currently have access to this content.