This paper investigates the compressive and shear properties of nanoporous gold (np-Au) coated with different ultrathin metallic materials (i.e., platinum and silver) via molecular dynamics simulations. Atomistic models used for the geometric representation of coated and uncoated np-Au structures are generated through a modeling technique based on the Voronoi tessellation method. Three different coating thickness values are used to examine the role of thickness for the coating performance under compressive and shear loading by comparing the mechanical characteristics of the atomistic models such as Young's modulus, yield, and ultimate strengths. Moreover, adaptive common neighbor analyses are carried out by monitoring the evolution of the crystal structure of the specimens during the loading process. In this way, the deformation mechanisms of coated and uncoated nanoporous specimens are identified thoroughly. As a key finding from the simulation results, it is observed that the mechanical properties of np-Au are crucially dependent on the type of the coating material. However, a significant improvement on the toughness within the plastic regime is demonstrated for all types of coating materials and loading conditions.

1.
J.
Zhang
and
C. M.
Li
, “
Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems
,”
Chem. Soc. Rev.
41
,
7016
(
2012
).
2.
X.
Lang
,
A.
Hirata
,
T.
Fujita
, and
M.
Chen
, “
Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors
,”
Nat. Nanotechnol.
6
,
232
236
(
2011
).
3.
J.
Biener
,
A.
Wittstock
,
L. A.
Zepeda-Ruiz
,
M. M.
Biener
,
V.
Zielasek
,
D.
Kramer
 et al., “
Surface-chemistry-driven actuation in nanoporous gold
,”
Nat. Mater.
8
,
47
51
(
2009
).
4.
Y.
Ding
,
M.
Chen
,
S.
Polarz
,
B.
Smarsly
,
G. W.
Huber
,
H. W.
Pickering
 et al., “
Nanoporous metals for catalytic and optical applications
,”
MRS Bull.
34
,
569
576
(
2009
).
5.
A.
Halder
,
L. A.
Curtiss
,
A.
Fortunelli
, and
S.
Vajda
, “
Perspective: Size selected clusters for catalysis and electrochemistry
,”
J. Chem. Phys.
148
,
110901
(
2018
).
6.
J.
Wang
,
R.
Xia
,
J.
Zhu
,
Y.
Ding
,
X.
Zhang
, and
Y.
Chen
, “
Effect of thermal coarsening on the thermal conductivity of nanoporous gold
,”
J. Mater. Sci.
47
,
5013
5018
(
2012
).
7.
I. C.
Cheng
and
A. M.
Hodge
, “
Morphology, oxidation, and mechanical behavior of nanoporous Cu foams
,”
Adv. Eng. Mater.
14
,
219
226
(
2012
).
8.
R.
Xia
,
J. L.
Wang
,
R.
Wang
,
X.
Li
,
X.
Zhang
,
X.-Q.
Feng
 et al., “
Correlation of the thermal and electrical conductivities of nanoporous gold
,”
Nanotechnology
21
,
085703
(
2010
).
9.
J.
Biener
,
A. M.
Hodge
,
V.
Hamza A
,
L. M.
Hsiung
, and
J. H.
Satcher
, “
Nanoporous Au: A high yield strength material
,”
J. Appl. Phys.
97
,
024301
(
2005
).
10.
M.
Hakamada
and
M.
Mabuchi
, “
Mechanical strength of nanoporous gold fabricated by dealloying
,”
Scr. Mater.
56
,
1003
1006
(
2007
).
11.
T. J.
Balk
,
C.
Eberl
,
Y.
Sun
,
K. J.
Hemker
, and
D. S.
Gianola
, “
Tensile and compressive microspecimen testing of bulk nanoporous gold
,”
JOM
61
,
26
31
(
2009
).
12.
N. J.
Briot
,
T.
Kennerknecht
,
C.
Eberl
, and
T. J.
Balk
, “
Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing
,”
Philos. Mag.
94
,
847
866
(
2014
).
13.
D.
Lee
,
X.
Wei
,
X.
Chen
,
M.
Zhao
,
S. C.
Jun
,
J.
Hone
 et al., “
Microfabrication and mechanical properties of nanoporous gold at the nanoscale
,”
Scr. Mater.
56
,
437
440
(
2007
).
14.
X.-Y.
Sun
,
G.-K.
Xu
,
X.
Li
,
X.-Q.
Feng
, and
H.
Gao
, “
Mechanical properties and scaling laws of nanoporous gold
,”
J. Appl. Phys.
113
,
023505
(
2013
).
15.
J. F.
Rodriguez-Nieva
,
C. J.
Ruestes
,
Y.
Tang
, and
E. M.
Bringa
, “
Atomistic simulation of the mechanical properties of nanoporous gold
,”
Acta Mater.
80
,
67
76
(
2014
).
16.
B.-N. D.
Ngô
,
A.
Stukowski
,
N.
Mameka
,
J.
Markmann
,
K.
Albe
, and
J.
Weissmüller
, “
Anomalous compliance and early yielding of nanoporous gold
,”
Acta Mater.
93
,
144
155
(
2015
).
17.
Y. O.
Yildiz
and
M.
Kirca
, “
Effects of ultrathin coating on the tensile behavior of nanoporous gold
,”
J. Appl. Phys.
122
,
084305
(
2017
).
18.
Y.
Ding
,
M.
Chen
, and
J
Erlebacher
, “
Metallic mesoporous nanocomposites for electrocatalysis
,”
J. Am. Chem. Soc.
126
,
6876
6877
(
2004
).
19.
R.
Zeis
,
A.
Mathur
,
G.
Fritz
,
J.
Lee
, and
J.
Erlebacher
, “
Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells
,”
J. Power Sources
165
,
65
72
(
2007
).
20.
A. M.
Hodge
,
R. T.
Doucette
,
M. M.
Biener
,
J.
Biener
,
O.
Cervantes
,
A. V.
Hamza
 et al., “
Ag effects on the elastic modulus values of nanoporous Au foams
,”
J. Mater. Res.
24
,
1600
1606
(
2009
).
21.
S.
Chan
,
S.
Kwon
,
T.-W.
Koo
,
L. P.
Lee
, and
A. A.
Berlin
, “
Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores
,”
Adv Mater.
15
,
1595
1598
(
2003
).
22.
L. Q.
Chen
and
J.
Shen
, “
Applications of semi-implicit Fourier-spectral method to phase field equations
,”
Comput. Phys. Commun.
108
,
147
158
(
1998
).
23.
A. C.
To
,
J.
Tao
,
M.
Kirca
, and
L.
Schalk
, “
Ligament and joint sizes govern softening in nanoporous aluminum
,”
Appl. Phys. Lett.
98
,
051903
(
2011
).
24.
Y. O.
Yildiz
and
M.
Kirca
, “
Atomistic simulation of Voronoi-based coated nanoporous metals
,”
Model. Simul. Mater. Sci. Eng.
25
,
025008
(
2017
).
25.
D.
Crowson
,
D.
Farkas
, and
S.
Corcoran
, “
Geometric relaxation of nanoporous metals: The role of surface relaxation
,”
Scr. Mater.
56
,
919
922
(
2007
).
26.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
27.
LAMMPS 2016, see http://lammps.sandia.gov/ for LAMMPS (2016).
28.
X. W.
Zhou
,
R. A.
Johnson
, and
H. N. G.
Wadley
, “
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers
,”
Phys. Rev. B
69
,
144113
(
2004
).
29.
A. P.
Thompson
,
S. J.
Plimpton
, and
W.
Mattson
, “
General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,”
J. Chem. Phys.
131
,
154107
(
2009
).
30.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
15012
(
2010
).
31.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Model. Simul. Mater. Sci. Eng.
20
,
45021
(
2012
).
32.
A.
Giri
,
J.
Tao
,
L.
Wang
,
M.
Kirca
, and
A. C.
To
, “
Compressive behavior and deformation mechanism of nanoporous open-cell foam with ultrathin ligaments
,”
J. Nanomech. Micromech.
4
,
A4013012
(
2014
).
33.
K.
Wang
and
J.
Weissmüller
, “
Composites of nanoporous gold and polymer
,”
Adv Mater.
25
,
1280
1284
(
2013
).
34.
H.-J.
Jin
,
L.
Kurmanaeva
,
J.
Schmauch
,
H.
Rösner
,
Y.
Ivanisenko
, and
J.
Weissmüller
, “
Deforming nanoporous metal: Role of lattice coherency
,”
Acta Mater.
57
,
2665
2672
(
2009
).
35.
M.
Göken
,
Free-Surface Structure and Properties
(
Intermet. Compd.—Princ. Pract., Chichester, John Wiley & Sons, Ltd
,
2002
), pp.
211
230
.
36.
S. J. A.
Koh
and
H. P.
Lee
, “
Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires
,”
Nanotechnology
17
,
3451
3467
(
2006
).
37.
F.
Aqra
and
A.
Ayyad
, “
Surface free energy of alkali and transition metal nanoparticles
,”
Appl. Surf. Sci.
314
,
308
313
(
2014
).
38.
K.
Kolluri
,
M. R.
Gungor
, and
D.
Maroudas
, “
Atomic-scale analysis of defect dynamics and strain relaxation mechanisms in biaxially strained ultrathin films of face-centered cubic metals
,”
J. Appl. Phys.
103
,
123517
(
2008
).
39.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
,
11085
11088
(
1998
).
40.
A.
Stukowski
,
V.
Bulatov V
, and
A.
Arsenlis
, “
Automated identification and indexing of dislocations in crystal interfaces
,”
Model. Simul. Mater. Sci. Eng.
20
,
085007
(
2012
).
41.
A.
Stukowski
and
K.
Albe
, “
Extracting dislocations and non-dislocation crystal defects from atomistic simulation data
,”
Model. Simul. Mater. Sci. Eng.
18
,
085001
(
2010
).
42.
M. R.
Gungor
and
D.
Maroudas
, “
Relaxation of biaxial tensile strain in ultrathin metallic films: Ductile void growth versus nanocrystalline domain formation
,”
Appl. Phys. Lett.
87
,
171913
(
2005
).
43.
T.-Y.
Kim
,
J. E.
Dolbow
, and
E.
Fried
, “
Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials
,”
Int. J. Solids Struct.
49
,
3942
3952
(
2012
).
44.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
(
Butterworth-Heinemann
,
2011
).
You do not currently have access to this content.