Large-scale graphene fabrication by thermal and chemical reductions of graphene oxide has faced the problem of defect formation. To solve the problem, we have considered a physically alternative reduction process including electronic excitation followed by the oxygen group detachment from the carbon sheet without capturing a sheet of carbon atoms. Single-layer graphene oxide films were studied by photoemission spectroscopy in the course of monochromatic synchrotron X-ray radiation with in situ control of the layer thickness, chemical composition, atomic ordering, and defect concentration exactly in the modified area. The radiation flux was too low to heat the film. A non-thermal and low-destructive effect of X-ray induced graphene oxide reduction has been revealed. Transformation of the sp3 σ bonds into sp2 π ordered bonds, bandgap closing, and significant diminishing of the oxygen content (below 5 at. %) have been observed without any signs of defects in the photoemission spectra. The effective cross section of the oxygen group detachment induced by a soft X-ray photon (hν = 130 eV) was estimated to be σ* ∼ 3 × 10−18 cm2. A reduced single-layer graphene oxide with a narrow bandgap (0.4 – 0.8 eV) attractive for many applications was obtained, as well as almost pure graphene.
Skip Nav Destination
Non-thermal and low-destructive X-ray induced graphene oxide reduction
Article navigation
7 November 2018
Research Article|
November 07 2018
Non-thermal and low-destructive X-ray induced graphene oxide reduction
V. M. Mikoushkin
;
V. M. Mikoushkin
a)
1
Ioffe Institute
, St. Petersburg 194021, Russia
Search for other works by this author on:
A. S. Kriukov;
A. S. Kriukov
1
Ioffe Institute
, St. Petersburg 194021, Russia
Search for other works by this author on:
S. Yu. Nikonov;
S. Yu. Nikonov
1
Ioffe Institute
, St. Petersburg 194021, Russia
Search for other works by this author on:
A. T. Dideikin;
A. T. Dideikin
1
Ioffe Institute
, St. Petersburg 194021, Russia
Search for other works by this author on:
A. Ya. Vul;
A. Ya. Vul
1
Ioffe Institute
, St. Petersburg 194021, Russia
Search for other works by this author on:
O. Yu. Vilkov
O. Yu. Vilkov
2
Fock Institute of Physics, St. Petersburg State University
, St. Petersburg 198904, Russia
3
Helmholtz-Zentrum BESSY II, German-Russian Laboratory
, D-12489 Berlin, Germany
Search for other works by this author on:
a)
E-mail: V.Mikoushkin@mail.ioffe.ru
J. Appl. Phys. 124, 175303 (2018)
Article history
Received:
July 04 2018
Accepted:
October 18 2018
Citation
V. M. Mikoushkin, A. S. Kriukov, S. Yu. Nikonov, A. T. Dideikin, A. Ya. Vul, O. Yu. Vilkov; Non-thermal and low-destructive X-ray induced graphene oxide reduction. J. Appl. Phys. 7 November 2018; 124 (17): 175303. https://doi.org/10.1063/1.5047045
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00