Molecular dynamics simulations were carried out for different structural models of the Si/3C-SiC interface using the Tersoff SiC potential that can model both Si and SiC. We find that the bonding at the Si/3C-SiC interface has a strong effect on the crystallization of the Si phase and that a degree of intermixing is present between the two materials with some C atoms migrating from the 3C-SiC (hereinafter referred to as SiC) into the Si region. The degree of intermixing is likely to exhibit a strong dependence on the temperature and most likely also increases with time, which would lead to changes in the Si/SiC interface during the life of the Si/SiC composite. The inter-mixing also creates disorder and defects of threefold and fivefold bonded atoms in the vicinity of the interfaces. In particular, {111}12110 misfit dislocations were formed at all three types of interfaces [(100), (110), and (111)] in order to relieve the local stress due to lattice mismatch. Additionally, the Si(110)/SiC(110) and Si(111)/SiC(111) interfaces prepared at higher temperatures show the formation of the {111}16112 partial dislocation which arises due to intrinsic stacking faults. We find that the bonding at the crystalline(c) c-Si/SiC interface is weaker than that in bulk crystalline Si, whereas bonding at the amorphous(a)-Si/SiC interface is stronger than that in amorphous Si. Therefore, the rupture in the yield stress occurs at the vicinity of the Si/SiC interface and in the Si region for the a-Si/SiC systems, respectively. Finally, for both bulk and Si/SiC interface systems, a strong variation of the yield strength with temperature was observed.

1.
L.
Vandenbulcke
,
G.
Fantozzi
,
S.
Goujard
, and
M.
Bourgeon
, “
Outstanding ceramic matrix composites for high temperature applications
,”
Adv. Eng. Mater.
7
,
137
142
(
2005
).
2.
B.
Kandola
and
E.
Kandare
, “
Composites having improved fire resistance
,” in
Advances in Fire Retardant Materials
(
Elsevier
,
2008
), pp.
398
442
.
3.
K. K.
Chawla
,
Composite Materials: Science and Engineering
(
Springer Science & Business Media
,
2012
).
4.
R. M.
Jones
,
Mechanics of Composite Materials
(
CRC Press
,
2014
).
5.
S.
Rana
and
R.
Fangueiro
,
Fibrous and Textile Materials for Composite Applications
(
Springer
,
2016
).
6.
P.
Baldus
,
M.
Jansen
, and
D.
Sporn
, “
Ceramic fibers for matrix composites in high-temperature engine applications
,”
Science
285
,
699
703
(
1999
).
7.
Y.
Katoh
, “
20—Ceramic matrix composites in fission and fusion energy applications
,” in
Advances in Ceramic Matrix Composites
, edited by
I.
Low
(
Woodhead Publishing
,
2014
), pp.
496
523
.
8.
D.
Traudes
and
A.
Harrison
, “
Overview of fatigue and creep testing of ceramic matrix composites for aerospace: Ceramic matrix composites have come a long way in the past decade in their ability to have sustained strength at high temperatures
,”
Quality
54
,
S17
S17
(
2015
).
9.
D.
Levy
, “Ceramic Matrix Composites Take Flight in Leap Jet Engine,” PHSX.ORG Website, 2017, see https://phys.org/news/2017-01-ceramic-matrix-composites-flight-jet.html.
10.
K.
Chawla
,
Ceramic Matrix Composites
(
Chapman & Hall
,
London
,
1993
).
11.
Z. S.
Rak
, “
A process for Cf/SiC composites using liquid polymer infiltration
,”
J. Am. Ceram. Soc.
84
,
2235
2239
(
2001
).
12.
M.
Krödel
and
J.
Rösenlöcher
, “
Fiber reinforced ceramic for usage in processing plants
,”
Adv. Eng. Mater.
2
,
549
550
(
2000
).
13.
J. F.
Petko
,
J. D.
Kiser
,
M.
Verilli
,
T.
McCue
, and
H. R.
Gray
, Characterization of C/SiC Ceramic Matrix Composites (CMCs) with Novel Interface Fiber Coatings, (NASA Glenn Research Center, Cleveland, OH, 2002).
14.
W.
Krenkel
, “
Carbon fibre reinforced silicon carbide composites (C/SiC, C/C-SiC)
,” in
Handbook of Ceramic Composites
(
Springer
,
2005
), pp.
117
148
.
15.
B.
Heidenreich
, “C/SiC and C/C-SiC composites,” in Ceramic Matrix Composites: Materials, Modeling and Technology (Wiley Online Library, 2014), pp. 147–216.
16.
X.
Yang
,
C.
Zhao-hui
, and
C.
Feng
, “
High-temperature protective coatings for C/SiC composites
,”
J. Asian Ceram. Soc.
2
,
305
309
(
2014
).
17.
P.
Kumar
and
V.
Srivastava
, “
Tribological behaviour of C/C–SiC composites—A review
,”
J. Adv. Ceram.
5
,
1
12
(
2016
).
18.
W.
Krenkel
and
H.
Hald
, “Liquid infiltrated C/SiC—An alternative material for hot space structures,” in Spacecraft Structures and Mechanical Testing (ESA Publication Division, 1989), pp. 325–330; available at https://eref.uni-bayreuth.de/16874/
19.
Y.-M.
Chiang
,
R. P.
Messner
,
C. D.
Terwilliger
, and
D. R.
Behrendt
, “
Reaction-formed silicon carbide
,”
Mater. Sci. Eng. A
144
,
63
74
(
1991
).
20.
J. A.
DiCarlo
and
H.-M.
Yun
, “
Non-oxide (silicon carbide) fibers
,” in
Handbook of Ceramic Composites
(
Springer
,
2005
), pp.
33
52
.
21.
S.
Kim
,
I. S.
Han
,
Y.-H.
Seong
, and
D. K.
Kim
, “
Mechanical properties of C–SiC composite materials fabricated by the Si–Cr alloy melt-infiltration method
,”
J. Compos. Mater.
49
,
3057
3066
(
2015
).
22.
T.
Tachibana
,
H.
Kong
,
Y.
Wang
, and
R.
Davis
, “
Hall measurements as a function of temperature on monocrystalline SiC thin films
,”
J. Appl. Phys.
67
,
6375
6381
(
1990
).
23.
A.
Severino
,
G.
Darrigo
,
C.
Bongiorno
,
S.
Scalese
,
F.
La Via
, and
G.
Foti
, “
Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates
,”
J. Appl. Phys.
102
,
023518
(
2007
).
24.
S.
Kukushkin
and
A.
Osipov
, “
Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films
,”
J. Phys. D: Appl. Phys.
47
,
313001
(
2014
).
25.
F.
La Via
,
F.
Roccaforte
,
A.
La Magna
,
R.
Nipoti
,
F.
Mancarella
,
P.
Wellman
,
D.
Crippa
,
M.
Mauceri
,
P.
Ward
,
L.
Miglio
et al., “
3C-SiC hetero-epitaxially grown on silicon compliance substrates and new 3C-SiC substrates for sustainable wide-band-gap power devices (challenge)
,” in
Materials Science Forum
(
Trans Tech Publications
,
2018
), Vol. 924, pp.
913
918
.
26.
F.
Iacopi
,
G.
Walker
,
L.
Wang
,
L.
Malesys
,
S.
Ma
,
B. V.
Cunning
, and
A.
Iacopi
, “
Orientation-dependent stress relaxation in hetero-epitaxial 3C-SiC films
,”
Appl. Phys. Lett.
102
,
011908
(
2013
).
27.
C.
Long
,
S.
Ustin
, and
W.
Ho
, “
Structural defects in 3C-SiC grown on si by supersonic jet epitaxy
,”
J. Appl. Phys.
86
,
2509
2515
(
1999
).
28.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
29.
J.
Tersoff
, “
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
39
,
5566
(
1989
).
30.
P.
Hirel
, “
Atomsk: A tool for manipulating and converting atomic data files
,”
Comput. Phys. Commun.
197
,
212
219
(
2015
).
31.
M.
Parrinello
and
A.
Rahman
, “
Crystal structure and pair potentials: A molecular-dynamics study
,”
Phys. Rev. Lett.
45
,
1196
(
1980
).
32.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with ovito—The open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
33.
P.
Vashishta
,
R. K.
Kalia
,
A.
Nakano
, and
J. P.
Rino
, “
Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide
,”
J. Appl. Phys.
101
,
103515
(
2007
).
34.
L.
Pizzagalli
,
J.
Godet
,
J.
Guénolé
,
S.
Brochard
,
E.
Holmstrom
,
K.
Nordlund
, and
T.
Albaret
, “
A new parametrization of the Stillinger–Weber potential for an improved description of defects and plasticity of silicon
,”
J. Phys.: Condens. Matter
25
,
055801
(
2013
).
35.
C.
Kittel
,
Introduction to Solid State
(
John Wiley & Sons
,
1966
), Vol. 162.
36.
J.
Hirth
and
J.
Lothe
,
Theory of Dislocations
, 2nd ed. (
John Willey & Sons
,
1982
).
37.
L.
Pizzagalli
,
P.
Beauchamp
, and
J.
Rabier
, “
Undissociated screw dislocations in silicon: Calculations of core structure and energy
,”
Philos. Mag.
83
,
1191
1204
(
2003
).
38.
Y.
Umeno
,
A.
Kubo
, and
S.
Nagao
, “
Density functional theory calculation of ideal strength of SiC and GaN: Effect of multi-axial stress
,”
Comput. Mater. Sci.
109
,
105
110
(
2015
).
39.
K.
Karch
,
P.
Pavone
,
W.
Windl
,
O.
Schütt
, and
D.
Strauch
, “
Ab initio calculation of structural and lattice-dynamical properties of silicon carbide
,”
Phys. Rev. B
50
,
17054
(
1994
).
40.
D.
Lee
and
J.
Joannopoulos
, “
Simple scheme for deriving atomic force constants: Application to SiC
,”
Phys. Rev. Lett.
48
,
1846
(
1982
).
41.
V.
Siklitsky
et al., “New Semiconductor Materials. Characteristics and Properties,” 2001, see http://www.ioffe.rssi.ru/SVA/NSM.
42.
D.
Feldman
,
J. H.
Parker, Jr.
,
W.
Choyke
, and
L.
Patrick
, “
Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R
,”
Phys. Rev.
173
,
787
(
1968
).
43.
R.
Carnahan
, “
Elastic properties of silicon carbide
,”
J. Am. Ceram. Soc.
51
,
223
224
(
1968
).
44.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond
(
Courier Corporation
,
2012
).
45.
Z.
Li
and
R. C.
Bradt
, “
The single-crystal elastic constants of cubic (3C) SiC to 1000 c
,”
J. Mater. Sci.
22
,
2557
2559
(
1987
).
46.
G. L.
Harris
,
Properties of Silicon Carbide
(
IET
,
1995
), p. 13.
47.
R.
Hill
, “
The elastic behaviour of a crystalline aggregate
,”
Proc. Phys. Soc. A
65
,
349
(
1952
).
48.
M. D.
Kluge
,
J. R.
Ray
, and
A.
Rahman
, “
Amorphous-silicon formation by rapid quenching: A molecular-dynamics study
,”
Phys. Rev. B
36
,
4234
(
1987
).
49.
W.-X.
Wang
,
L.-S.
Niu
,
Y.-Y.
Zhang
, and
E.-Q.
Lin
, “
Tensile mechanical behaviors of cubic silicon carbide thin films
,”
Comput. Mater. Sci.
62
,
195
202
(
2012
).
50.
S. M.-M.
Dubois
,
G.-M.
Rignanese
,
T.
Pardoen
, and
J.-C.
Charlier
, “
Ideal strength of silicon: An ab initio study
,”
Phys. Rev. B
74
,
235203
(
2006
).
51.
J.
Pokluda
,
M.
Černỳ
,
M.
Šob
, and
Y.
Umeno
, “
Ab initio calculations of mechanical properties: Methods and applications
,”
Prog. Mater. Sci.
73
,
127
158
(
2015
).
52.
W.
Li
and
T.
Wang
, “
Elasticity, stability, and ideal strength of β-SiC in plane-wave-based ab initio calculations
,”
Phys. Rev. B
59
,
3993
(
1999
).
53.
R.
Zhang
,
S.
Leng
,
Y.
Yang
,
W.
Shi
, and
Z.
Lu
, “
Atomistic simulation of the mechanical properties of β-SiC based on the first-principles
,”
Phys. B: Condens. Matter
512
,
1
5
(
2017
).
54.
Y. M.
Chiang
,
D. P.
Birnie
, and
W. D.
Kingery
, “Physical Ceramics: Principles for Ceramic Science and Engineering, A Joint Venture by IISc and IITs, Funded by MHRD, Govt of India, 1996, see http://nptel.iitm.ac.in.
55.
A.
Blumenau
,
T.
Frauenheim
,
S.
Öberg
,
B.
Willems
, and
G.
Van Tendeloo
, “
Dislocation structures in diamond: Density-functional based modelling and high-resolution electron microscopy
,” in
Defect and Diffusion Forum
(
Trans Tech Publications
,
2004
), Vol. 226, pp.
11
30
.
56.
V.
Chirita
,
L.
Hultman
, and
L.
Wallenberg
, “
Strain relaxation and thermal stability of the 3C-SiC (001)/Si (001) interface: A molecular dynamics study
,”
Thin Solid Films
294
,
47
49
(
1997
).
57.
C. B.
Carter
and
M. G.
Norton
,
Ceramic Materials: Science and Engineering
(
Springer Science & Business Media
,
2007
).
58.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
, “
What is the Young’s modulus of silicon?
,”
J. Microelectromech. Syst.
19
,
229
238
(
2010
).
59.
W.
Lambrecht
,
B.
Segall
,
M.
Methfessel
, and
M.
Van Schilfgaarde
, “
Calculated elastic constants and deformation potentials of cubic SiC
,”
Phys. Rev. B
44
,
3685
(
1991
).
60.
J.
Petrovic
,
J.
Milewski
,
D.
Rohr
, and
F.
Gac
, “
Tensile mechanical properties of SiC whiskers
,”
J. Mater. Sci.
20
,
1167
1177
(
1985
).

Supplementary Material

You do not currently have access to this content.