A phase field model incorporating the electrostatic free energy and the grain orientation effect is developed and employed to study the grain boundary migration and preferential grain growth in widely used beta-tin (β-Sn) under electric current stressing. The directional migration of grain boundaries and the preferential growth of the grain with its orientation having low electrical resistivity along the electric current direction are theoretically clarified. In a bicrystal system containing a circular grain, the shrinkage velocity and morphology changes of grains are dominated by the competition effect between the grain boundary energy and the electrostatic free energy; in particular, the high-density electric current can induce the instability of grain morphology evolution. Moreover, grain morphology evolution leads to the change of the voltage across the β-Sn system; it is found that the voltage decreases over time in a tricrystal system, while the variation of the voltage across the bicrystal system is related to the above-mentioned competition effect. The proposed model and results provide insights into the orientation-related microstructure evolution under electric current stressing.

2.
M.
Winning
,
G.
Gottstein
, and
L. S.
Shvindlerman
,
Acta Mater.
49
,
211
(
2001
).
3.
T. J.
Rupert
,
D. S.
Gianola
,
Y.
Gan
, and
K. J.
Hemker
,
Science.
326
,
1686
(
2009
).
4.
A. D.
Sheikh-Ali
,
D. A.
Molodov
, and
H.
Garmestani
,
Appl. Phys. Lett.
82
,
3005
(
2003
).
5.
M.
Tonks
,
P.
Millett
,
W.
Cai
, and
D.
Wolf
,
Scr. Mater.
63
,
1049
(
2010
).
6.
X. M.
Bai
,
Y.
Zhang
, and
M. R.
Tonks
,
Acta Mater.
85
,
95
(
2015
).
7.
G.
Gottstein
and
L. S.
Shvindlerman
,
Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications
(
CRC Press
,
Boca Raton
,
FL
,
2009
), pp.
140
144
.
8.
F.
Haessner
,
S.
Hofmann
, and
H.
Seekel
,
Scr. Metall.
8
,
299
(
1974
).
9.
K.
Kemmochi
and
K.
Hirano
,
Thin Solid Films
25
,
353
(
1975
).
10.
J. W.
Jeong
,
J. H.
Han
, and
D. Y.
Kim
,
J. Am. Ceram. Soc.
83
,
915
(
2000
).
11.
A. T.
Wu
,
K. N.
Tu
,
J. R.
Lloyd
,
N.
Tamura
,
B. C.
Valek
, and
C. R.
Kao
,
Appl. Phys. Lett.
85
,
2490
(
2004
).
13.
J. F.
Rufner
,
D.
Kaseman
,
R. H.
Castro
, and
K.
Benthem
,
J. Am. Ceram. Soc.
99
,
1951
(
2016
).
14.
J. Q.
Chen
,
J. D.
Guo
,
K. L.
Liu
, and
J. K.
Shang
,
J. Appl. Phys.
114
,
153509
(
2013
).
15.
X.
Linares
,
C.
Kinney
,
K. O.
Lee
, and
J. W.
Morris
,
J. Electron. Mater.
43
,
43
(
2014
).
16.
T. L.
Yang
,
J. J.
Yu
,
C. C.
Li
,
Y. F.
Lin
, and
C. R.
Kao
,
J. Alloy Compd.
627
,
281
(
2015
).
17.
Y. A.
Shen
and
C.
Chen
,
Scr. Mater.
128
,
6
(
2017
).
18.
D. N.
Bhate
,
A.
Kumar
, and
A. F.
Bower
,
J. Appl. Phys.
87
,
1712
(
2000
).
19.
P.
Zhou
and
W. C.
Johnson
,
J. Electron. Mater.
40
,
1867
(
2011
).
20.
M. S.
Park
,
S. L.
Gibbons
, and
R.
Arróyave
,
Acta Mater.
61
,
7142
(
2013
).
21.
H.
Xiong
,
Z.
Huang
, and
P.
Conway
,
IEEE Trans. Device Mater. Reliab.
14
,
995
(
2014
).
22.
A.
Mukherjee
,
K.
Ankit
,
R.
Mukherjee
, and
B.
Nestler
,
J. Electron. Mater.
45
,
6233
(
2016
).
23.
J. Y.
Huh
,
K. K.
Hong
,
Y. B.
Kim
, and
K. T.
Kim
,
J. Electron. Mater.
33
,
1161
(
2004
).
24.
L. Q.
Chen
and
W.
Yang
,
Phys. Rev. B
50
,
15752
(
1994
).
25.
N.
Moelans
,
B.
Blanpain
, and
P.
Wollants
,
Phys. Rev. B
78
,
024113
(
2008
).
26.
J. E.
Guyer
,
W. J.
Boettinger
, and
J. A.
Warren
,
Phys. Rev. E
69
,
021603
(
2004
).
27.
R. E.
Newnham
,
Properties of Materials: Anisotropy, Symmetry, Structure
(
Oxford University Press
,
Oxford
,
2005
), pp.
9
12
.
28.
A.
Khosla
and
H. B.
Huntington
,
J. Phys. Chem. Solids
36
,
395
(
1975
).
29.
E. B.
Greenhill
and
S. R.
McDonald
,
Nature
171
,
37
(
1953
).
30.
M. S.
Sellers
,
A. J.
Schultz
,
C.
Basaran
, and
D. A.
Kofke
,
Appl. Surf. Sci.
256
,
4402
(
2010
).
31.
J. R.
Lloyd
,
J. Appl. Phys.
94
,
6483
(
2003
).
32.
Q.
Ma
and
Z.
Suo
,
J. Appl. Phys.
74
,
5457
(
1993
).
33.
Z.
Suo
,
W.
Wang
, and
M.
Yang
,
Appl. Phys. Lett.
64
,
1944
(
1994
).
34.
You do not currently have access to this content.