One of the most challenging goals of flooded chalk analyses used in Enhanced Oil Recovery (EOR) is to reach high-resolution mineralogical data, in order to detect the composition of new crystals grown after brine injections, with ≤1 μm grain size. Understanding how flooding affects chemical induced compaction, mechanical strength permeability, and porosity is paramount in EOR related investigations. Magnesite formation is the most pervasive process when MgCl2 is injected into chalk, and the submicrometric grain size of the new minerals requires a high performing imaging technique and a new methodological approach: in our study, we present the first attempt of applying Tip-Enhanced Raman Spectroscopy (TERS) to rock and mineral samples. It is a new frontier technique that couples Raman Spectroscopy with Atomic Force Microscopy, allowing impressively high-resolution topography and mineralogical maps. Two long term experiments have been analyzed, where chalk cores were flooded for 718 days and 1072 days, at reservoir conditions comparable to hydrocarbon reservoirs in chalk at the Norwegian continental shelf. Few microns squared areas have been imaged by Atomic Force Microscopy using ultra-polished thin sections. First analyses identified a less pervasive secondary growth of magnesite in the 718 days test and an almost pure magnesite composition in the 1072 days test. Transmission Electron Microscopy (TEM) has been employed to confirm the results of TERS and add dark and bright field grain imaging to the investigations. This confirms the need for high-resolution methodologies such as TERS and TEM to fully understand the EOR effects at submicron-scale.

1
Andersen
,
P. Ø.
,
Wang
,
W.
,
Madland
,
M. V.
,
Zimmermann
,
U.
,
Korsnes
,
R. I.
,
Bertolino
,
S. R. A.
,
Minde
,
M.
,
Schulz
,
B.
, and
Gilbricht
,
S.
, “
Comparative study of five outcrop chalks flooded at reservoir conditions: Chemo-mechanical behaviour and profiles of compositional alteration
,”
Transp. Porous Media
121
(
1
),
135
181
(
2018
).
2
Andò
,
S.
and
Garzanti
,
E.
, “
Raman spectroscopy in heavy-mineral studies
,” in
Sediment Provenance Studies in Hydrocarbon Exploration and Production
, edited by
R. A.
Scott
,
H. R.
Smyth
,
A. C.
Morton
, and
N.
Richardson
(
Geological Society
,
London
,
England
,
2013
), Special Publications, p.
386
.
3
Bailo
,
E.
and
Deckert
,
V.
, “
Tip-enhanced Raman scattering
,”
Chem. Soc. Rev.
37
,
921
930
(
2008
).
4
Bischoff
,
W. D.
,
Sharma
,
S. K.
, and
MacKenzie
,
F. T.
, “
Carbonate ion disorder in synthetic and biogenic magnesian calcites: A Raman spectral study
,”
Am. Mineral.
70
(
5–6
),
581
589
(
1985
).
5
Borromeo
,
L.
,
Zimmermann
,
U.
,
Andò
,
S.
,
Coletti
,
G.
,
Bersani
,
D.
,
Basso
,
D.
,
Gentile
,
P.
,
Schulz
,
B.
, and
Garzanti
,
E.
, “
Raman spectroscopy as a tool for magnesium estimation in Mg-calcite
,”
J. Raman Spectrosc.
48
(
7
),
983
992
(
2017
).
6
Borromeo
,
L.
,
Egeland
,
N.
,
Minde
,
M. W.
,
Zimmermann
,
U.
,
Andò
,
S.
,
Madland
,
M. V.
, and
Korsnes
,
R. I.
Quick, easy and economic mineralogical studies of flooded chalk for EOR experiments using Raman spectroscopy
,”
Minerals
(to be published).
7
Dandeu
,
A.
,
Humbert
,
B.
,
Carteret
,
C.
,
Muhr
,
H.
,
Plasari
,
E.
, and
Bossoutrot
,
J. M.
, “
Raman spectroscopy—A powerful tool for the quantitative determination of the composition of polymorph mixtures: Application to CaCO3 polymorph mixtures
,”
Chem. Eng. Technol.
29
(
2
),
221
225
(
2006
).
8
De La Pierre
,
M.
,
Carteret
,
C.
,
Maschio
,
L.
,
André
,
E.
,
Orlando
,
R.
, and
Dovesi
,
R.
, “
The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study
,”
J. Chem. Phys.
140
(
16
),
164509
(
2014
).
9
Edwards
,
H.
,
Villar
,
S.
,
Jehlicka
,
J.
, and
Munshi
,
T.
, “
FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals
,”
Spectrochim. Acta A
61
,
2273
(
2005
).
10
Egeland
,
N.
,
Minde
,
M. W.
,
Kobayashi
,
K.
,
Ota
,
T.
,
Nakamura
,
E.
,
Zimmermann
,
U.
,
Madland
,
M. W.
, and
Korsnes
,
R. I.
, “
Quantification of mineralogical changes in flooded carbonate under reservoir conditions,
” in
IOR 2017—19th European Symposium on Improved Oil Recovery
(
EAGE
,
2017
).
11
Griffith
,
W. P.
, “
Raman spectroscopy of minerals
,”
Nature
224
,
264
266
(
1969
).
12
Hattin
,
D. E.
and
Siemers
,
C. T.
,
Upper Cretaceous Stratigraphy and Depositional Environments of Western Kansas
(
Kansas Geological Survey
,
1987
), Guidebook 3.
13
Heggheim
,
T.
,
Madland
,
M. V.
,
Risnes
,
R.
, and
Austad
,
T.
, “
A chemical induced enhanced weakening of chalk by seawater
,”
J. Petroleum Sci. Eng.
46
(
3
),
171
184
(
2005
).
14
Herman
,
R. G.
,
Bogdan
,
C. E.
,
Sommer
,
A. J.
, and
Simpson
,
D. R.
, “
Discrimination among carbonate minerals by Raman spectroscopy using the laser microprobe
,”
Appl. Spectrosc.
41
(
3
),
437
440
(
1987
).
15
Hiorth
,
A.
,
Jettestuen
,
E.
,
Lawrence
,
C. M.
, and
Madland
,
M. V.
, “
Precipitation, dissolution, and ion exchange processes coupled with a lattice Boltzmann advection diffusion solver
,”
Geochim. Cosmochim. Acta
104
,
99
110
(
2013
).
16
Hjuler
,
M. L.
and
Fabricius
,
I. L.
, “
Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area
,”
J. Petroleum Sci. Eng.
68
(
3
),
151
170
(
2009
).
17
Korsnes
,
R. I.
,
Strand
,
S.
,
Hoff
,
Ø
,
Pedersen
,
T.
,
Madland
,
M. V.
, and
Austad
,
T.
, “
Does the chemical interaction between seawater and chalk affect the mechanical properties of chalk
,” in
Multiphysics Coupling and Long Term Behaviour in Rock Mechanics
, edited by
A. V.
Cottheim
,
R.
Charlier
,
J. F.
Thimus
, and
J. P.
Tshibangu
(
Taylor & Francis
,
London
,
2006
), pp.
427
434
.
18
Korsnes
,
R. I.
,
Madland
,
M. V.
,
Austad
,
T.
,
Haver
,
S.
, and
Rosland
,
G.
, “
The effects of temperature on the water weakening of chalk by seawater
,”
J. Petroleum Sci. Eng.
60
,
183
193
(
2008
).
19
Krishnamurti
,
D.
, “
Raman spectrum of magnesite
,”
Proc. Indian Acad. Sci., Sec. A
,
43
(
4
),
210
2012
(
1956
).
20
Kuebler
,
K.
,
Wang
,
A.
,
Abbott
,
K.
, and
Haskin
,
L. A.
, “
Can we detect carbonate and sulfate minerals on the surface of Mars by Raman spectroscopy?
” in
Lunar and Planetary Science XXXII n. 1889
(
Lunar and Planetary Inst., Houston, TX
,
2001
).
21
Kumar
,
N.
,
Su
,
W.
,
Veselý
,
M.
,
Weckhuysen
,
B. M.
,
Pollard
,
A. J.
, and
Wain
,
A. J.
, “
Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy
,”
Nanoscale
10
(
4
),
1815
1824
(
2018
).
22
Langelüddecke
,
L.
,
Singh
,
P.
, and
Deckert
,
V.
, “
Exploring the nanoscale: Fifteen years of tip-enhanced Raman spectroscopy
,”
Appl. Spectrosc. OA
69
(
12
),
1357
1371
(
2015
).
23
Li
,
L.
,
Liu
,
K.
,
Suen
,
B.
,
Liu
,
Q.
,
King
,
A.
, and
Talke
,
F. E.
, “
Numerical and experimental study of near-field heating using Tip-Enhanced Raman Spectroscopy (TERS)
,”
Tribology Lett.
66
(
1
),
26
(
2018
).
24
Madland
,
M. V.
,
Finsnes
,
A.
,
Alkafadgi
,
A.
,
Risnes
,
R.
, and
Austad
,
T.
, “
The influence of CO2 gas and carbonate water on the mechanical stability of chalk
,”
J. Petroleum Sci. Eng.
51
,
149
168
(
2006
).
25
Madland
,
M. V.
,
Midtgarden
,
K.
,
Manafov
,
R.
,
Korsnes
,
R. I.
,
Kristiansen
,
T.
, and
Hiorth
,
A.
, “
The effect of temperature and brine composition on the mechanical strength of Kansas chalk
,” in
International Symposium of the Society of Core Analysts
(
SCA
,
Abu Dhabi
,
2008
)
, pp.
1
6
.
26
Madland
,
M. V.
, “
Rock-fluid interactions in chalk exposed to seawater, MgCl₂, and NaCl brines with equal ionic strength
,” in
15th European Symposium on Improved Oil Recovery
(
EAGE
,
Paris
,
2009
), pp.
27
29
.
27
Madland
,
M. V.
,
Hiorth
,
A.
,
Omdal
,
E.
,
Megawati
,
M.
,
Hildebrand-Habel
,
T.
,
Korsnes
,
I. R.
,
Evje
,
S.
, and
Cathles
,
M. L.
, “
Chemical alterations induced by rock-fluid interactions when injecting brines in high porosity chalks
,”
Transp. Porous Media
87
,
679
702
(
2011
).
28
Madland
,
M. V.
,
Zimmermann
,
U.
,
Haser
,
S.
,
Audinot
,
J. N.
,
Gysan
,
P.
,
Korsnes
,
R. I.
,
Schulz
,
B.
,
Gutzmer
,
J.
, and
Hiorth
,
A.
, “
Neoformed dolomite in flooded chalk for EOR processes
”, in
75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013
(
EAGE
,
2013
).
29
Meyer
,
R.
,
Yao
,
X.
, and
Deckert
,
V.
, “
Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy
,”
Trends Analyt. Chem.
102
,
250
258
(
2018
).
30
Minde
,
M. W.
,
Haser
,
S.
,
Korsnes
,
R. I.
,
Zimmermann
,
U.
, and
Madland
,
M. V.
, “
Comparative studies of mineralogical alterations of three ultra-long-term tests of onshore chalk at reservoir conditions
,” in
IOR 2017—19th European Symposium on Improved Oil Recovery 2017
(
EAGE
,
2017
).
31
Molenaar
,
N.
and
Zijlstra
,
J. J. P.
, “
Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk
,”
Sediment. Geol.
109
(
3–4
),
261
281
(
1997
).
32
Nermoen
,
A.
,
Korsnes
,
R. I.
,
Hiorth
,
A.
, and
Madland
,
M. V.
, “
Porosity and permeability development in compacting chalks during flooding of nonequilibrium brines: Insights from long-term experiment
,”
J. Geophys. Res.: Solid Earth
120
(
5
),
2935
2960
(
2015
).
33
Ossikovski
,
R.
,
Nguyen
,
Q.
, and
Picardi
,
G.
, “
Simple model for the polarization effects in tip-enhanced Raman spectroscopy
,”
Phys. Rev. B
75
(
4
),
045412
(
2007
).
34
Park
,
J. Y.
,
Maier
,
S.
,
Hendriksen
,
B.
, and
Salmeron
,
M.
, “
Sensing current and forces with SPM
,”
Mater. Today
13
(
10
),
38
45
(
2010
).
35
Pettinger
,
B.
,
Ren
,
B.
,
Picardi
,
G.
,
Schuster
,
R.
, and
Ertl
,
G.
, “
Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy
,”
Phys. Rev. Lett.
92
(
9
),
096101
(
2004
).
36
Picardi
,
G.
,
Chaigneau
,
M.
,
Ossikovski
,
R.
,
Licitra
,
C.
, and
De La Pierre
,
G.
, “
Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au (111)
,”
J. Raman Spectrosc.
40
(
10
),
1407
1412
(
2009a
).
37
Picardi
,
G.
,
Chaigneau
,
M.
, and
Ossikovski
,
R.
, “
High resolution probing of multiwall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode
,”
Chem. Phys. Lett.
469
,
161
165
(
2009b
).
38
Picardi
,
G.
,
Kròlikowska
,
A.
,
Yasukuni
,
R.
,
Chaigneau
,
M.
,
Escude
,
M.
,
Mourier
,
V.
,
Licitra
,
C.
, and
Ossikovski
,
R.
, “
Exchange of methyl and azobenzene terminated alkanethiol on polycrystalline gold studied by tip enhanced Raman mapping
,”
Chem. Phys. Chem.
15
,
276
282
(
2014
).
39
Purgstaller
,
B.
,
Mavromatis
,
V.
,
Immenhauser
,
A.
, and
Dietzel
,
M.
, “
Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite—in situ monitoring
,”
Geochim. Cosmochim. Acta
174
,
180
195
(
2016
).
40
Pyne
,
A.
,
Thompson
,
R.
,
Leung
,
C.
,
Roy
,
D.
, and
Hoogenboom
,
B. W.
, “
Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy
,”
Small
10
(
16
),
3257
3261
(
2014
).
41
Raman
,
C. V.
, “
A new radiation
,”
Indian J. Phys.
2
,
387
398
(
1928
).
42
Ren
,
B.
,
Picardi
,
G.
, and
Pettinger
,
B.
, “
Preparation of gold tips suitable for tip-enhanced Raman Spectroscopy and light emission by electrochemical etching
,”
Rev. Sci. Instrum.
75
,
837
841
(
2004
).
43
Risnes
,
R.
,
Madland
,
M. V.
,
Hole
,
M.
, and
Kwabiah
,
N. K.
, “
Water weakening of chalk—mechanical effects of water-glycol mixtures
,”
J. Petroleum Sci. Eng.
48
,
21
36
(
2005
).
44
Robaszynski
,
F.
,
Dhondt
,
A. V.
, and
John
,
W. M.
, “
Cretaceous lithostratigraphic units (Belgium)
,”
Geol. Belg.
4
(
1–2
),
121
134
(
2001
).
45
Rutt
,
H. N.
and
Nicola
,
J. H.
, “
Raman spectra of carbonates of calcite structure
,”
J. Phy. C: Solid State Phys.
7
(
24
),
4522
4528
(
1974
).
46
Schultz
,
Z. D.
,
Marr
,
J. M.
, and
Wang
,
H.
, “
Tip enhanced Raman scattering: Plasmonic enhancements for nanoscale chemical analysis
,”
Nanophotonics
3
(
1–2
),
91
104
(
2014
).
47
Slimani
,
H.
, “
New species of dinoflagellate cysts from the Campanian-Danian chalks at Hallembaye and Turnhout (Belgium) and at Beutenaken (the Netherlands)
,”
J. Micropalaeontol.
20
(
1
),
1
11
(
2001
).
48
Stadler
,
J.
,
Schmid
,
T.
, and
Zenobi
,
R.
, “
Nanoscale chemical imaging of single-layer graphene
,”
ACS Nano
5
(
10
),
8442
8448
(
2011
).
49
Strand
,
S.
,
Standnes
,
D. C.
, and
Austad
,
T.
, “
Spontaneous imbibition of aqueous surfactant solutions into neutral to oil-wet carbonate cores: Effects of brine salinity and composition
,”
Energy Fuels
17
(
5
),
1133
1144
(
2003
).
50
Strand
,
S.
,
Hjuler
,
M. L.
,
Torsvik
,
R.
,
Pedersen
,
J. I.
,
Madland
,
M. V.
, and
Austad
,
T.
, “
Wettability of chalk: Impact of silica, clay content and mechanical properties
,”
Petroleum Geosci.
13
(
1
),
69
80
(
2007
).
51
Sun
,
J.
,
Wu
,
Z.
,
Cheng
,
H.
,
Zhang
,
Z.
, and
Frost
,
R. L.
, “
A Raman spectroscopic comparison of calcite and dolomite
,”
Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
117
,
158
162
(
2014
).
52
Tang
,
G. Q.
and
Firoozabadi
,
A.
, “
Effect of pressure gradient and initial water saturation on water injection in water-wet and mixed-wet fractured porous media
,”
SPE Res. Eval. Eng.
4
,
516
524
(
2001
).
53
Toccafondi
,
C.
,
Picardi
,
G.
, and
Ossikovski
,
R.
, “
Molecular bending at the nanoscale evidenced by tip-enhanced Raman spectroscopy in tunneling mode on thiol self-assembled monolayers
,”
J. Phys. Chem. C
120
(
32
),
18209
18219
(
2016
).
54
Unvros
,
J.
,
Sharma
,
S.
, and
Mackenzie
,
F.
, “
Characterization of some biogenic carbonates with Raman spectroscopy
,”
Am. Mineral.
76
,
641
646
(
1991
).
55
Vanacore
,
G. M.
,
Chaigneau
,
M.
,
Barrett
,
N.
,
Bollani
,
M.
,
Boioli
,
F.
,
Salvalaglio
,
M.
,
Montalenti
,
F.
,
Manini
,
N.
,
Caramella
,
L.
,
Biagioni
,
P.
,
Chrastina
,
D.
,
Isella
,
G.
,
Renault
,
O.
,
Zani
,
M.
,
Sordan
,
R.
,
Onida
,
G.
,
Ossikovski
,
R.
,
Drouhin
,
H.-J.
, and
Tagliaferri
,
A.
, “
Hydrostatic strain enhancement in laterally confined SiGe nano-stripes
,”
Phys. Rev. B
88
,
115309
(
2013
).
56
Wang
,
W.
,
Madland
,
M. V.
,
Zimmermann
,
U.
,
Nermoen
,
A.
,
Reidar
,
I.
,
Korsnes
,
R.
,
Bertolino
,
S. R. A.
, and
Hildebrand-Habel
,
T.
, “
Evaluation of porosity change during chemo-mechanical compaction in flooding experiments on Liege outcrop chalk
,” in
Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction
, edited by
P. J.
Armitage
,
A. R.
Butcher
,
J. M.
Churchill
,
A. E.
Csoma
,
C.
Hollis
,
R. H.
Lander
,
J. E.
Omma
, and
R. H.
Worden
(
Geological Society
,
London
,
2016
), Special Publications, 435-10.
57
Yang
,
Z.
,
Aizpurua
,
J.
, and
Xu
,
H.
, “
Electromagnetic field enhancement in TERS configurations
,”
J. Raman Spectrosc.
40
(
10
),
1343
1348
(
2009
).
58
Zangiabadi
,
B.
,
Korsnes
,
R. I.
,
Hildebrand-Habel
,
T.
,
Hiorth
,
A.
,
Surtarjana
,
I. K.
,
Lian
,
A.
, and
Madland
,
M. V.
, “
Chemical water weakening of various outcrop chalks at elevated temperature
,” in
Poromechanics IV
, edited by
H. I.
Ling
,
A.
Smyth
, and
R.
Betti
(
DEStech Publications, Inc.
,
Lancaster
,
2009
), pp.
543
548
.
59
Zimmermann
,
U.
,
Madland
,
M. V.
,
Nermoen
,
A.
,
Hildebrand-Habel
,
T.
,
Bertolino
,
S. A. R.
,
Hiorth
,
A.
,
Korsnes
,
R. I.
,
Audinot
,
J. N.
, and
Grysan
,
P.
, “
Evaluation of the compositional changes during flooding of reactive fluids using scanning electron microscopy, nano-secondary ion mass spectroscopy, x-ray diffraction, and whole-rock geochemistry
,”
Am. Assoc. Petroleum Geol. Bull.
99
,
791
805
(
2015
).
60
Zimmermann
,
U.
,
Madland
,
M.
,
Minde
,
M.
,
Borromeo
,
L.
, and
Egeland
,
N.
, “
Tools to determine and quantify mineralogical changes during EOR flooding experiments on chalk
,” in
SPE Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers
(
SPE
,
2017
).
61
Zhang
,
P.
,
Tweheyo
,
M. T.
, and
Austad
,
T.
, “
Wettability alteration and improved oil recovery in chalk: The effect of calcium in the presence of sulfate
,”
Energy Fuels
20
(
5
),
2056
2062
(
2006
).
You do not currently have access to this content.