The structural and electronic properties of pristine and SO2 adsorbed buckled tin nanotubes were investigated using density functional theory calculations. The effects of SO2 gas adsorption on the electronic structure of the nanotubes were analyzed in detail. SO2 molecule was initially positioned on the armchair and zigzag stanene based nanotubes with orientations through both interacting sulfur and oxygen sites. The results suggest that the considered armchair nanotubes have direct bandgaps at the K point, indicating the semiconductor characteristics of these nanotubes. Thus, these nanotubes are efficient candidates for gas sensing applications. Moreover, the considered (9, 0) and (10, 0) zigzag nanotubes also exhibit semiconductor behavior. Among the armchair nanotubes, the highest (most negative) adsorption energy belongs to (8, 8) armchair nanotube, which indicates that SO2 interaction with (8, 8) nanotube is energetically most favorable. The adsorption energy slightly increases with increasing the nanotube diameter. Besides, the adsorption of the SO2 molecule on the nanotube surface through its oxygen atoms is more favorable in energy than that through its central sulfur atom. The projected density of states of the interacting tin and oxygen atoms show the formation of chemical bonds between these atoms, as evidenced by the accumulation of electronic density at the middle of the newly formed bonds. Based on charge density difference calculations, we found the charge accumulation on the adsorbed SO2 molecule, which represents that SO2 acts as a charge acceptor.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
Y.
Zhang
,
Y. W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
3.
C.
Berger
,
Z.
Song
,
X.
Li
,
X.
Wu
,
N.
Brown
,
C.
Naud
,
D.
Mayou
,
T.
Li
,
J.
Hass
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
Science
312
,
1191
(
2006
).
4.
S. V.
Morozov
,
K. S.
Novoselov
,
M. I.
Katsnelson
,
F.
Schedin
,
D.
Elias
,
J. A.
Jaszczak
, and
A. K.
Geim
,
Phys. Rev. Lett.
100
,
016602
(
2008
).
5.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
6.
B.
Huang
,
H. X.
Deng
,
H.
Lee
,
M.
Yoon
,
B. G.
Sumpter
,
F.
Liu
,
S. C.
Smith
, and
S. H.
Wei
, “
Exceptional optoelectronic properties of hydrogenated bilayer silicene
,”
Phys. Rev. X 
4
,
021029
(
2014
).
7.
V. Q.
Bui
,
T. T.
Pham
,
H. V. S.
Nguyen
, and
H. M.
Le
, “
Transition metal (Fe and Cr) adsorptions on buckled and planar silicene monolayers: A density functional theory investigation
,”
J. Phys. Chem. C
117
,
23364
23371
(
2013
).
8.
A. I.
Shkrebtii
,
E.
Heritage
,
P.
McNelles
,
J. L.
Cabellos
, and
B. S.
Mendoza
, “
Graphene and graphane functionalization with hydrogen: Electronic and optical signatures
,”
Phys. Status Solidi C
9
,
1378
1383
(
2012
).
9.
P.
Vogt
,
P.
De Padova
,
C.
Quaresima
,
J.
Avila
,
E.
Frantzeskakis
,
C.
Asensio M
,
A.
Resta
,
B.
Ealet
, and
G.
Le Lay
,
Phys. Rev. Lett
108
,
489
92
(
2012
).
10.
P.
Kaloni T
and
U.
Schwingenschlögl
,
Phys. Lett.
583
,
137
40
(
2013
).
11.
E.
Bianco
,
S.
Butler
,
S.
Jiang
,
O. D.
Restrepo
,
W.
Windl
, and
E.
Joshua
,
ACS Nano
7
,
4414
21
(
2013
).
12.
S.
Rachel
and
M.
Ezawa
, “
Giant magnetoresistance and perfect spin filter in silicene, germanene and stanene
,”
Phys. Rev. B
89
,
195303
(
2014
).
13.
F.-f.
Zhu
,
W.-j.
Chen
,
Y.
Xu
,
C.-l.
Gao
,
D.-d.
Guan
,
C.-h.
Liu
,
D.
Qian
,
S.-C.
Zhang
, and
J.-f.
Jia
,
Nat Mater
14
,
1020
(
2015
).
14.
B.
Cai
,
S.
Zhang
,
Z.
Hu
,
Y.
Hu
,
Y.
Zou
, and
H.
Zeng
, “
Tinene: A two-dimensional Dirac material with a 72 meV band gap
,”
Phys. Chem. Chem. Phys.
17
,
12634
12638
(
2015
).
15.
I.
Choudhuri
,
N.
Patra
,
A.
Mahata
,
R.
Ahuja
, and
B.
Pathak
, “
B—N@Graphene: Highly Sensitive and Selective Gas Sensor
,”
J. Phys. Chem. C
119
,
24827
24836
(
2015
).
16.
C.-C.
Liu
,
H.
Jiang
, and
Y.
Yao
,
Phys. Rev. B
84
,
195430
(
2011
).
17.
C. S.
Yeung
,
L. V.
Liu
, and
Y. A.
Wang
, “
Adsorption of small gas molecules onto Pt-doped single walled carbon nanotubes
,”
J. Phys. Chem. C
112
,
7401
7411
(
2008
).
18.
M.
Yoosefian
,
H.
Raissi
, and
A.
Mola
, “
The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: A DFT study
,”
Sens. Actuators B Chem.
212
,
55
62
(
2015
).
19.
P.
Buasaeng
,
W.
Pakrai
,
B.
Wanno
, and
C.
Tabtimsai
, “
DFT investigation of NH3, PH3 and AsH3 adsorption on Sc, Ti, and Cr-doped single walled carbon nanotubes
,”
Appl. Surf. Sci.
400
,
506
514
(
2017
).
20.
X.
Chen
,
C.
Tan
,
Q.
Yang
,
R.
Meng
,
Q.
Liang
,
M.
Cai
,
S.
Zhang
, and
J.
Jiang
, “
Ab initio study of the adsorption of small molecules on stanene
,”
J. Phys. Chem. C
120
(
26
),
13987
13994
(
2016
) 920160.
21.
A.
Abbasi
and
J. J.
Sardroodi
, “
Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations
,”
Comp. Theor. Chem.
1095
,
15
28
(
2016
).
22.
A.
Abbasi
and
J. J.
Sardroodi
, “
N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: Insights from DFT computations
,”
Environ. Sci. Nano
3
,
1153
1164
(
2016
).
23.
A.
Abbasi
and
J. J.
Sardroodi
, “
A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT
,”
Comput. Theo. Chem.
1114
,
8
19
(
2017
).
24.
A.
Abbasi
and
J. J.
Sardroodi
, “
Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: A DFT study
,”
J. Sulfur Chem.
38
(
1
),
52
68
(
2017
).
25.
A.
Abbasi
and
J. J.
Sardroodi
, “
Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: A comparison between undoped and N-doped nanocomposites
,”
J Nanostruct. Chem.
6
,
309
327
(
2016
).
26.
A.
Abbasi
and
J. J.
Sardroodi
, “
Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices
,”
Appl. Surf. Sci.
436
,
27
41
(
2018
).
27.
A.
Abbasi
and
J. J.
Sardroodi
, “
Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: A DFT study
,”
Adsorption
24
,
29
41
(
2018
).
28.
A.
Abbasi
and
J. J.
Sardroodi
, “
Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: A van der Waals corrected DFT study
,”
J Nanostruct. Chem.
7
,
345
358
(
2017
).
29.
A.
Abbasi
and
J. J.
Sardroodi
, “
Density functional theory investigation of the interactions between the buckled stanene nanosheet and XO2 gases (X=N, S, C)
,”
Comput. Theor. Chem.
1125
,
15
28
(
2018
).
30.
A.
Abbasi
and
J. J.
Sardroodi
, “
Interaction of sulfur trioxide molecules with armchair and zigzag stanene-based nanotubes: Electronic properties exploration by DFT calculations
,”
Adsorption
24
(
5
),
443
458
(
2018
).
31.
A.
Pieplu
,
O.
Saur
,
J. C.
Lavalley
,
O.
Legendre
, and
C.
Nedez
,
J. Catal. Rev. Sci. Eng.
40
,
409
(
1998
).
32.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
33.
W.
Kohn
and
L.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
34.
See http://www.openmxsquare.org for the code, OPENMX, pseudoatomic basis functions, and pseudopotentials.
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
78
,
1396
(
1981
).
36.
37.
T.
Ozaki
and
H.
Kino
,
Phys. Rev.
B69
,
195113
(
2004
).
38.
T.
Ozaki
and
H.
Kino
,
J. Chem. Phys.
121
,
10879
(
2004
).
39.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garca
,
J.
Junquera
,
P.
Ordejn
, and
D.
Snchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys. Condens. Matter.
14
,
2745
2779
(
2002
).
40.
A.
Koklj
, “
Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
,”
Comput. Mater. Sci.
28
,
155
168
(
2003
).
41.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
42.
C.
Wang
,
X.
Fu
,
Y.
Guo
,
Z.
Guo
,
C.
Xia
, and
Y.
Jia
, “
Band gap scaling laws in group IV nanotubes
,”
Nanotechnology
28
,
115202
(
2017
).
43.
T. W.
Odom
,
J.-L.
Huang
,
P.
Kim
, and
C. M.
Lieber
,
Nature
391
,
62
(
1998
).
44.
S.
Fleming
and
A.
Rohi
, “
GDIS: A visualization program for molecular and periodic systems
,”
Zeitschrift für Kristallographie – Cryst. Mater.
220
,
580
584
(
2005
).
45.
G.
Lee
,
G.
Yang
,
A.
Cho
,
J. W.
Han
, and
J.
Kim
,
Phys. Chem. Chem. Phys.
18
,
14198
14204
(
2016
).
46.
L. K.
Randeniya
,
H.
Shi
,
A. S.
Barnard
,
J.
Fang
,
P. J.
Martin
, and
K. K.
Ostriko
,
Small
9
,
3993
(
2013
).

Supplementary Material

You do not currently have access to this content.